1. КИШКИ И ПОРОХ

We use cookies. Read the Privacy and Cookie Policy

1. КИШКИ И ПОРОХ

…В совсем уж темные времена созревшую у племени потребность навязать другим свою политическую волю реализовывали его физически развитые представители. Конечно, со временем они додумались применить в своей славной деятельности дубины, топоры, луки, но гордость дарованной природой мускулатурой, романтика ратного подвига — закрепились на генетическом уровне. Уже в конце семидесятых годов XX века автору довелось познакомиться с полковником авиации, который, подвыпив, с тоской в голосе мечтал о временах, когда мордобойцы после «дела» собирались у костров, и под «песняк» наслаждались неспешными мужскими беседами…

Понятно, что в таких беседах умничанье звучало возмутительным диссонансом, набрасывающим тень на воспоминания о «честном, открытом бое», о чем в краткой, доступной для понимания форме информировались «возникавшие» умники. Но древние времена были сугубо конкретными и закрывать глаза на реальность долго было нельзя: ширились слухи, что при осаде персидского города Галикарнасса были применены устройства (рис. 1.1) забрасывавшие за крепостные стены каменюки, тухлятину а также — неприличествующие честному бою горшки с говном. Устройства приводились в действие натягиваемыми воинами канатами, свитыми из воловьих кишок. И если снаряды первой категории причиняли защитникам не вызывавшие возмущения общественности телесные повреждения, то остальные — приводили к эпидемическому мору, что «понятиям» не соответствовало.

От разглагольствовавших умников уже нельзя было отмахнуться кулаком или дубиной, что ясно хотя бы из того, что впечатления от осады Галикарнасса дошли до нас из 334-го года до новой эры. Сохранила память поколений и имя завоевавшего Галикарнасс и, еще половину мира: Александр Македонский, что тоже свидетельствует об эффективности применявшихся им методов.

Рис. 1.1. Катапульта, применявшаяся при осаде Галикарнасса

«Нечестные» эти методы внедрялись медленно, но уж точно — верно. Испанцы, в 1342 году осаждавшие засевших в Альхесирасе арабов, сложив ладошки рупорами, стыдили своих противников. И были на то причины: с крепостных стен то и дело хлопало, клубился противно пахнувший серой дым и летели осколки камней или чугунные кругляши. Камушки могли уязвить раззявившегося простолюдина, а чугунные ядра — расплющить латы, а заодно и рыцаря, разъезжавшего под стенами в ожидании честного поединка. Если бы благородным идальго удалось подняться на занятую противником крепостную стену, они вряд ли удержались бы от непристойностей: некто тыкал в то, что он именовал «модфой», раскаленный металлический прут, а то бахало, провожая сатанинской вонью улетевшее в сторону противника.

Но не довелось благородным взять Альхесирас, а уж тем более — посмотреть на богопротивные гнусности, творившиеся на стенах. Был у того процесса другой зритель (рис. 1.2): окруженный охраной, по всем признакам — занимающий крайне ответственную должность.

А неприличный, с бороденкой и проволокой в руках просто нашел полезное применение тому, что за много веков до него использовали для увеселительных фейерверков китайцы: смеси селитры, серы и древесного угля.

Рис. 1.2. Арабская модфа — первое из известных огнестрельных орудий

Черный порох не столь древен, как колесо, но, как и колесо, работает до сих пор: в огнепроводных шнурах, вышибных зарядах, воспламенителях ракетных двигателей, артиллерийских выстрелов и многом другом.

Он содержит в своем составе все, что нужно для горения: окислитель (кислород селитры) и горючее (уголь)[1]. При сгорании кубического сантиметра «черняшки» выделяется тепловая энергия 3,3 килоджоуля — в общем-то, не очень много, но гораздо более важно время, за которое эта энергия выделяется: тысячные доли секунды. По развиваемой мощности с кубиком черного пороха не под силу поспорить ни одному мордобойцу.

То, что нагретые энергией взрывного горения газы способны на многое, стало ясно сразу: они разносили не только деревянные, скрепленные металлическими обручами, но и первые литые металлические стволы. Поиски оптимума не обошлись без переборов: стоит только оценить толщину стенок стволов коротышек-мортир (рис. 1.3) времен гражданской войны в Америке (1861–1865 гг.). Наверняка ультимативным требованием было обеспечить прочность ствола при любых обстоятельствах, а робкие возражения малохольных в пенсне: «так у вас ядро далеко не полетит» густоголосо отметались: «а нам далеко и не надо». И то верно: через даже негустые кустарники на полях Джорджии и Алабамы противника было не разглядеть.

Рис. 1.3. Мортира времен гражданской войны в Америке

А вот на море кустов нет, моряки видели дальше сухопутных, для чего даже поднимались на клотики мачт. И пушки их были длиннее, изящнее, что легко узреть из фотографии (рис. 1.4) времен Крымской войны[2]: в защищавшем Севастополь форте — орудия с типично морскими лафетами.

…Одной только оценки — сколько страниц содержит эта книга — достаточно, чтобы читатель понял: она не является обзором типов и характеристик артиллерийских орудий. Если в ней и приводятся фотографии, то — для иллюстрации тенденций, характерных особенностей оружия. Рассмотрев рисунки 1.3 и 1.4, обратим внимание, как наводились на цели орудия в XIX веке. Горизонтальная наводка мортиры осуществлялась поворотом колес: одно стопорилось, а другое — проворачивалось с помощью лома, который виден на рис. 1.3. Вертикальная наводка пушки защищавшей редут (рис. 1.4) столь же «ювелирна»: обратите внимание на ступени задней поверхности ее лафета — на них накладывался тот же лом, который и поддерживал ствол на нужном угле возвышения.

Рис. 1.4. Развалины форта Редан, составлявшего оборонительную систему Севастополя. Потери британских войск, долго и безуспешно штурмовавших этот форт, составили более 4000 только убитыми. Взяли же его (и тоже — дорогой ценой) французы

Понятно, какую точность стрельбы обеспечивало подобное наведение, поэтому для компенсации промахов ядрам стали придавать дополнительные поражающие свойства. Обширного опыта разрывов стволов при стрельбах хватило, чтобы сообразить: если порох горит в ограниченном объеме и давление повышается, то скорость горения возрастает, что приводит к разрыву не слишком прочного сосуда. Ядро стали делать полым и засыпать внутрь порох, который дробил его на осколки, также способные причинить урон. А для воспламенения разрывного заряда применили трубку, наполненную пороховой мякотью: ее горение обеспечивало задержку между выстрелом и разрывом ядра.

Изготовление запальной трубки содержало много ноу-хау. Металлической ее было сделать нельзя из-за теплопередачи: начало горения привело бы к воспламенению всей пороховой мякоти, прилегающей к поверхности и преждевременному разрыву. Деревянная же трубка вываливалась из ядра при сотрясении, сопровождавшем выстрел. Поэтому трубка из дерева обкатывалась в медной втулке, а ту — запрессовывали перед боевым применением в ядро, с помощью кувалды и специального приспособления (обратите внимание на задний план рис. 1.3 — трубки в ядра еще не запрессованы, а возможно, не засыпан и порох).

Описание производства боеприпаса заняло несколько строк, но по тем временам его с полным правом можно было отнести к категории хайтека. И не надо снисходительно улыбаться «простоте» предков: уже в наши дни, в художественном фильме о войне 1812 года пришлось увидеть как «артиллеристы» вкладывают ядра запальными трубками к зарядной каморе. Если бы это были не киношные муляжи, а настоящие ядра, последствия были бы трагическими: газы выстрела под высоким давлением обязательно прорвались бы через отверстие для трубки к заряду ядра, вызвав его взрыв в стволе. В «грозу 12 года» и позже фейерверкеры заряжали ядра запальными трубками к дульной части: после выстрела еще достаточно горячие газы, но уже под небольшим давлением, обтекали ядро, зажигая трубку. Так, по крайней мере, было в теории, потому что объективные свидетельства отказов боеприпасов того времени поражают (рис. 1.5).

Рис. 1.5. Из дагерротипа времен Крымской войны, сделанною после неудачного для русских войск сражения при Инкермане и патетически названного его автором «Долина смерти и теней», можно представить, насколько частыми были отказы боеприпасов того времени

Однажды в Севастополе автор набрел на такое ядро (рис. 1.6). Чугун корродировал не насквозь, а медная втулка, смявшись при ударе (возможно — о камень), намертво закупорила его. После осторожного удаления ее, внутри был обнаружен сохранившийся черный порох. За почти полтора столетия он, конечно, слежался, но отколупываемые кусочки, после минимального просушивания, энергично «пыхали» с белыми облачками дыма. Если бы запальная трубка сработала как надо, ядро могло причинить неприятности защитникам севастопольских бастионов!

Рис. 1.6. Ядро времен Крымской войны, найденное в Севастополе

Во времена Крымской войны позиции черного пороха казались незыблемыми. Но робко появлялись на арене безобидные (пока!) вещества с негромкими именами. Гусман в 1788 г., подействовав на индиго азотной кислотой, получил краситель для тканей, изумительно желтого цвета — пикриновую кислоту. В том же году Гусман получил и первый фульминат — гремучее серебро, а позже — и гремучую ртуть. Оба фульмината взрывались от несильных ударов, также как и нитроглицерин, полученный в 1846 г. Собреро. Чувствительность этих веществ считалась чрезмерной, исключающей практическое применение. Также чересчур капризным считался пироксилин, полученный Шенбайном при нитрации ваты: был он нестойким, упорно сохраняя следы кислоты. Все же, горел пироксилин неплохо и его стали использовать, чтобы зажигать свечи на люстрах, а позже — для получения первой пластмассы — целлулоида…

…И вдруг обнаружилось, что нитроглицерин желатинирует пироксилин, образуя «пластмассу», нечувствительную к удару, горящую стабильно и не слишком быстро, а следы кислот в ней можно связать добавкой веществ-стабилизаторов. «Пластмассу» назвали баллиститом и она, как и полученный из нитроглицерина и пироксилина, но — с добавкой ацетона кордит, сразу показали свои преимущества перед «черняшкой», потому что:

— содержали баллистит и кордит почти втрое больше энергии;

— давали при сгорании намного больше газов и намного меньше — твердых остатков, засорявших при стрельбе механизмы оружия.

Габариты пушек заметно уменьшились, а стрелять они стали дальше и чаше. Но в новых пушках происходил известный процесс — горение[3], а вот в новых снарядах — ранее не известная детонация, которую возбуждал взрыв гремучей ртути в контакте с пикриновой кислотой.

Детонация тесно связана с ударной волной (УВ). Удар такой волны в XIX веке удалось ощутить немногим: тем, кто оказался близко от разряда молнии, в котором быстро расширялся нагретый током газ. а также тем, кто выжил после близкого разрыва крупного ядра с зарядом пороха. Правда, ту же УВ, но — ослабленную, выродившуюся в акустическую, многие слышали.

Пусть поршень начал двигаться в цилиндре с газом (рис. 1.7). Он чуть-чуть подожмет и погонит газ впереди себя, при этом по газу пойдет акустическая (звуковая) волна, скорость фронта которой равна скорости звука, а массе сжатого газа будет придана скорость поршня. Отметим, что в сжатом газе скорость звука больше, чем в несжатом. Пусть поршень прошел еще некоторое расстояние. Тогда следующая волна пойдет по уже сжатому газу и, значит, будет иметь большую скорость. Кроме того, сам сжатый газ движется со скоростью поршня и, следовательно, относительно цилиндра скорость второй волны равна сумме скоростей: поршня и увеличенной — звука. Эта сумма и подавно превосходит скорость первого возмущения. Поэтому вторая волна сжатия непременно догонит первую. Но перегнать се она не сможет, так как для этого ей пришлось бы перейти в несжатый газ, где скорость распространения опять равна начальной скорости звука. Обе волны сольются. Если поршень продолжит движение, он погонит впереди себя волну сжатия увеличивающейся амплитуды, которая образуется в результате слияния отдельных слабых воли. В слившихся волнах, как едином скачке уплотнения, будет расти давление — до произвольно больших значений, в зависимости от скорости поршня. Этот скачок — резкое, происходящее на расстоянии порядка длины свободного пробега молекул изменение параметров вещества — и называется ударной волной (УВ).

Рис. 1.7. Образование ударной волны поршнем, вдвигаемым в цилиндр с газом

В УВ массовая скорость вещества (скорость поршня) всегда меньше скорости фронта. Чтобы продемонстрировать это, возьмем несколько карандашей и. оставляя зазоры равные их толщине (что будет моделировать двукратное увеличение плотности вещества при сжатии), разложим в ряд на столе. Затем начнем двигать крайний из карандашей. Выбрав зазор, этот карандаш толкнет соседний, тот, пройдя зазор — следующий и т. д. Заметьте, что «фронт» процесса (граница области, где находятся карандаши без зазоров между ними) всегда опережает любой из двигающихся карандашей. Чем больше сжатие (больше расстояние между карандашами), тем меньше различаются массовая скорость и скорость фронта, но отличие существует всегда.

УВ не только сжимает, она также и нагревает вещество. Из-за этого плотность сжатого вещества не становится сколь угодно большой при неограниченно большом давлении, а стремится к конечному пределу (воздух, например, сжимается не более чем в 6 раз). Предел ударного сжатия существует и для конденсированных веществ.

Но все это относится к субстанциям инертным, а ведь есть и такие, молекулы которых метастастабильны и распад их происходит с выделением энергии. Достаточно мощная УВ как раз и инициирует этот процесс: за ударным фронтом в нагретом веществе начинается химическая реакция. Вначале энергией этой реакции фронт может «подпитываться», ускоряясь при этом, но затем устанавливается равновесие. Такой процесс называется детонацией, а установившаяся скорость симбиоза УВ и химической реакции за ее фронтом — скоростью детонации, которая, для той же пикриновой кислоты, была для XIX века поистине «космической» — 7,2 км/с (при плотности 1,6 г/см3).

Понятно, что термодинамические характеристики вещества изменяются при протекании в нем реакции, но и с учетом этого явление детонации вполне возможно описать в рамках теории УВ: скорость детонации относительно продуктов реакции равна местной скорости звука в продуктах реакции