«Незваный» изотоп

We use cookies. Read the Privacy and Cookie Policy

«Незваный» изотоп

Все идеи по модернизации и совершенствованию атомного оружия появились уже в последние годы войны, но их отложили «на потом», торопясь, как уже говорилось, скорее сотрясти мир хоть и несовершенными, но невиданными по силе взрывами.

Той самой печкой, от которой потом начали «танцевать» учёные-атомщики, стала центральная часть бомбы — ядерный заряд. Низкая эффективность урановой бомбы проистекала из-за несовершенства способа подрыва— «пушечного» метода. Но заряды первых двух плутониевых бомб «срабатывали» уже по другой схеме — с использованием «взрыва внутрь» — так называемой имплозии. И не столько ради высокой эффективности, тогда не это было главным, сколько по той простой причине, что в первых полученных из реактора образцах плутония-239 содержался ещё и химически абсолютно неотделимый от него изотоп плутония-240.

Этот «незваный» изотоп оказался чрезвычайно радиоактивным и должен был стать препятствием для «пушечного» метода. При сближении двух плутониевых половинок в орудийном стволе из-за интенсивного распада «темпераментного» изотопа они начнут взаимодействовать гораздо раньше, чем половинки сольются в критическую массу. Может произойти «хлопок» — неполный взрыв, который пушечный ствол возможно и разрушит, но и только.

Нужно было значительно увеличивать скорость летящей половинки — что вызывало само по себе другие почти непреодолимые трудности — или искать новый метод ядерной детонации. И он нашёлся.

Это, как уже говорилось, имплозия — взрыв, направленный внутрь. Подавляющее большинство представляет себе взрыв как процесс, в котором происходит мгновенное расширение, разлёт реагирующих веществ от центра — наружу. Это эксплозивный взрыв, чаще всего наблюдаемый в жизни.

Однако специалисты знают, что с помощью конструктивных ухищрений можно заставить энергию взрыва не разбегаться, а «сходиться в точку» — концентрировать её по заданным направлениям.

Давно известны сделанные по такому принципу кумулятивные заряды — их применяют в капсюлах-детонаторах, для резки металлов и дробления громадных кусков руды в карьерах.

Во время Отечественной войны у немцев появились снаряды, которые пробивали танковую броню в несколько раз более толстую, чем советские такого же калибра.

Разведка раздобыла эти образцы, и академик Михаил Лаврентьев — будущий создатель и первый руководитель Сибирского Отделения АН СССР — взялся исследовать «пробивной» снаряд врага. Выяснилось, что носовая часть их — полая, в виде конуса или полусферы, внутренняя часть этой полости покрыта металлической оболочкой. При взрыве снаряда оболочка вбирает в себя всю энергию взрывчатки, сходящуюся к центру сферы. Колоссальная мощь чрезвычайно уплотнённого и сконцентрированного металла прожигает броню, а остаточная энергия взрыва расширяет полученное отверстие, разрушая танковую защиту. Впрочем, это было предположение, которое сделал Лаврентьев, и следовало экспериментом подтвердить или отвергнуть его.

К тому времени в одной московской рентгеновской лаборатории научились делать моментальные снимки различных фаз быстропротекающих процессов молодые «рентгенщики» — Вениамин Цукерман и Лев Альтшуллер (потом к ним присоединится Виталий Гинзбург). Ухитрились для начала снять винтовочную пулю в полёте.

В этой лаборатории и получили снимки различных стадий взрыва вражеского кумулятивного снаряда, что полностью подтвердило предположение академика. Так советские специалисты впервые встретились с военным применением имплозии. Это было в 1942 году, а спустя четыре года молодые «рентгенщики» всерьёз займутся имплозией для атомной бомбы и станут ключевыми фигурами в разработке ядерного оружия.

Но раньше, чем советские учёные, и даже раньше американцев «приспособить» имплозию для ядерного оружия попытались немцы. В том же 1942-ом они применили кумулятивные заряды для сжатия и детонации термоядерного горючего — тяжёлого водорода.

В качестве индикатора термоядерных реакций немецкие учёные использовали серебряную фольгу — она регистрирует появление в «термояде» нейтронов, которые являются важнейшим и непременным доказательством синтеза.

И, хотя немцы были на верном пути, опыты закончились неудачей — а ведь стоило им лишь увеличить на порядок мощность кумулятивных зарядов, как удалось бы зафиксировать термоядерные нейтроны. К счастью, фортуна отвернулась от ядерщиков рейха.

Словом, имплозия тогда была уже «в ходу», и американцы сумели заставить её поработать на эффективность атомных зарядов. Чтобы ясно представить себе особенности механизма взрыва «внутрь», можно рассмотреть довольно наглядную модель этого явления в ядерном заряде.

Данный текст является ознакомительным фрагментом.