Утечка расплавленного вещества из Южной башни

We use cookies. Read the Privacy and Cookie Policy

Утечка расплавленного вещества из Южной башни

Теперь перейдём к вопросу об утечке загадочного вещества незадолго до обрушения Южной башни. На видео- и фотоматериалах заметно, как нечто оранжево-жёлтое вытекает из здания на уровне 80-го этажа. Можно также наблюдать истечение металла из третьего и четвёртого окна на Северном фасаде по северо-восточному углу башни номер 2.[192] Обратим внимание также на белый пепел, время от времени вылетающий из здания. Нет, не более тёмный по цвету дым, а именно белый пепел. Естественно, что дым является результатом пожара внутри здание. В целом ряде случаев белый пепел сопровождает специфические химические реакции.

Говоря о названной нами угловой части фасада, откуда происходит утечка вещества, NIST демонстрирует фотографию необычного пламени и в этой связи подчёркивает:

«В ходе пожара наблюдалось необычное пламя. На верхней фотографии (Рис. 9-44) отмечается необычайно яркое пламя в противоположность типичной жёлтой или оранжевой окраске пламени в данном случае наблюдаются перьевые выбросы белого дыма».[193]

Итак, на фотографии зафиксировано место необычной химической реакции, производящей перьевые выбросы белого дыма. Запомним этот факт, поскольку чуть позже мы проанализируем характерные особенности горения термитных смесей. NIST указывает также, что в 09:52, то есть, всего за несколько минут до обрушения, в одном из окон произошла ослепительная вспышка, сопровождавшаяся выбросом пылающего жидкого вещества. Это существенное свидетельство: ослепительно яркая вспышка, белые перья дыма и расплавленный металл, вытекающий из окон.

Что это такое?

Какие эксперименты можно поставить, чтобы попытаться воспроизвести аналогичное явление?

Выдвину четыре гипотезы для объяснения данного феномена:

1. Расплавились элементы конструкции.

2. Расплавленный алюминий обшивки самолёта с примесью органики и т. п.

3. Сочетание первого и второго события, включая примеси офисного оборудования и пр.

4. Расплавленные металлы (например, железо) под воздействием мощных экзотермических реакций (например, в результате алюмотермического процесса, или горения термической смеси).

Рассмотрим первую гипотезу — плавление стальных конструкций самого здания:

«Температура горения в ВТЦ была обычной и определённо не была в состоянии расплавить сталь»[194]. «Первая мысль о реактивном топливе. Вот, что сделало пламя столь интенсивным. Многие полагают, что горение топлива вызвало плавление стали в конструкциях ВТЦ. В действительности же сталь не была расплавлена».[195]

Специалисты NIST не обнаружили таких стальных сплавов, которые плавились бы при 600 °C. Сталь начинает плавиться при температуре более. чем 1500 °C. Не бывает настолько «жарких» пожаров, чтобы расплавить сталь.

Для проверки второй гипотезы мы провели эксперименты с расплавленным алюминием. Мы расплавили алюминиевый сплав в стальном тигле и вылили алюминий в ёмкость. Вещество было серебристого цвета и не обладало ярко-оранжевым свечением, какое наблюдалось на Южной башне. Затем мы раскалили тигель до получения ярко-жёлтого цвета и влили в него алюминий. Расплавленный алюминий сохранил всё тот же серебристый цвет.

Можно ли довести алюминий до 1000 °C (температура оранжевого спектра), если алюминий находится в текучем состоянии? Разве что, под рукой у вас в здании, охваченном пожаром, имеется огромный тигель, в котором кто-то разогревает алюминий до температуры выше точки плавления.

Причина, почему расплавленный алюминий выглядит серебристым, понятна. Свечение простых металлов в оранжевом спектре при нагреве начинается в диапазоне температур около 1000 °C. Алюминиевые сплавы плавятся при 600 °C. Мы нагрели стальной тигель и увидели жёлто-оранжевый цвет раскалённой стальной ёмкости. Однако, расплавленный алюминий содержит много свободных электронов и поэтому отражает большее количество света. Алюминий также имеет низкий коэффициент излучения, иными словами — алюминий светится, но только очень слабо. При дневном освещении, жидкий алюминий кажется серебристым особенно в момент слива из-за высокой отражательной способности. Светящаяся как бы изнутри жидкость, вытекавшая из Южной башни, не могла быть алюминием, потому что не обладала серебристым оттенком. По свидетельству очевидцев, скорее это загадочное вещество светилось «раскалённым оранжевым цветом» (так сказано в докладе NIST и засвидетельствовано очевидцами).

Кроме того, алюминий очень трудно раскалить. Например, в нашем эксперименте мы направили кислородно-ацетиленовый факел на расплав алюминия. Произошло окисление, но не возгорание с «необычным пламенем». Никакого пламени от алюминия вообще не было замечено.

В фактической справке (август 2006 г.) NIST утверждает:

«Вывод NIST»: источником расплавленного вещества (наблюдаемое вытекание из ВТЦ-2 перед обрушением. — Прим. пер.) является алюминиевый сплав самолётного корпуса, так как известно, что его точка плавления 475–640 °C (в зависимости от характеристики сплава), то есть значительно ниже ожидаемой температуры (приблизительно 1000 °C). Алюминий не воспламеняется при обычной температуре пожара. Отсутствуют визуальные признаки горения вытекающего из башни вещества. Обычно расплавленный беспримесный алюминий имеет серебристое свечение. Однако, расплав металла весьма вероятно имел примеси с большим количеством раскалённого, частично выгоревшего, твёрдого органического вещества (например, мебель, ковры, перегородки и оргтехника), который при горении может приобретать оранжевую окраску, напоминая по цвету горящие поленья в камине. Наблюдаемый оранжевый цвет мог также появиться в результате горения шлаковых отложений на поверхности межэтажных перекрытий».[196]

Увидев словосочетание «может приобретать» в фактической справке NIST, я, как учёный, не смог побороть желания поставить ещё один эксперимент. Почему этого не сделала команда NIST, прежде чем публиковать подобные утверждения (или они всё-таки провели эксперимент)? Неужели они даже не пробовали смешать алюминий с «органикой» и вылить смесь (наподобие текучего вещества из Южной башни), чтобы убедиться, что алюминий не только «может», но и на самом деле светится оранжевым цветом? Мы решили сделать эксперимент самостоятельно.

Буквально на следующий день после прочтения справки NIST (август 2006 года) мы с коллегой поставили эксперимент с алюминием, смешав его с органикой, главным образом деревянной щепой. Расплавленный металл носил серебристый оттенок и совершенно ничем не напоминал оранжевое вещество, просочившееся из Южной башни. При добавлении к расплавленному алюминию, органика горела легко и быстро. Пепел плавал на поверхности алюминиевого расплава.

Молодой профессор физики сказал мне, что ему не верится, чтобы сотрудники NIST обошлись без эксперимента и не пожелали убедиться воочию, насколько работоспособна гипотеза об извлечении «оранжевого свечения» при добавлении органики в алюминий. Таким образом, мы провели ещё одну серию опытов. Ещё один молодой профессор присоединился к нашим усилиям. На сей раз мы использовали древесный пепел из моей дровяной печи, кусок ковра, осколки пластмассы, стеклянный стакан (в осколках) и расплавили всю эту кучу органики вместе с алюминием. (Между прочим, моя дровяная печь сделана из стали, но я ничуточки не волновался, что моя буржуйка расплавится!)

Вооружившись длинной отвёрткой, молодой физик упорно перемешивал смесь алюминия с органикой. Он упорно пытался смешать эту органику с расплавленным алюминием, но они никак не желали смешиваться в единое целое! Они вели себя наподобие нефти и воды. Как известно органика имеет тенденцию плавать на поверхности. Органика неизменно стремилась отделиться от алюминия и всплыть. В конце концов, мы вылили смесь в ёмкость, но расплавленная струя всё ещё выглядела абсолютно серебристой. Молодой учёный был вынужден согласиться с этим научным фактом, потому что наблюдал его собственным глазами. Как ни крути — стабильный серебристый цвет и никакого оранжевого свечения! Так что, можете дать собственную оценку «фактической справке NIST», где чёрным по белому сказано, будто «расплав металла весьма вероятно имел примеси с большим количеством раскёленного, частично выгоревшего, твёрдого органического вещества (например, мебель, ковры, перегородки и оргтехника), которое при горении может приобретать оранжевое свечение».

Если сотрудники NIST могут сказать нам, каким образом они проделали свой трюк с оранжевым свечением, то мы с коллегой готовы ещё раз повторить эксперимент для проверки гипотезы. Итак, мы оба убедились, что плавание органики по поверхности не производит однородного оранжевого свечения. Заключение: вылитый расплавленный алюминий по-прежнему выглядит серебристым (несмотря на то, что мы упорно разогревали его, пока корпус моей железной печурки не приобрёл жёлто-оранжевого свечения). Нам так и не удалось получить оранжевого свечения, наблюдавшегося в Южной башне при истечении расплавленного вещества (пусть оно и было смешано с органикой).

Итак, мы исключили расплавленные стальные конструкции и даже расплавленный алюминий с примесями органики, как источник оранжевого свечения, утечка которого произошла, причём в больших количествах, из помещений Южной башни. Поиск других объяснений этому феномену, конечно же, продолжается. Например, Франк Грининг (Frank Greening) предлагает своё истолкование. Он полагает, что самолётный алюминий мог расплавиться и попасть на «проржавевшие стальные перекрытия, спровоцировав мощные термитные взрывы».[197]

Вы уже догадались, что мы пригласили за компанию несколько студентов и, не откладывая дело в долгий ящик, поставили эксперимент — расплавили алюминий и выплеснули его на предварительно раскалённую ржавую стальную поверхность. Увы, не произошло вообще никакой, тем более, «мощной термитной» реакции. Однако мы заметили, что температура алюминия в контакте со ржавым железом стала падать на 25 °C в минуту (замеры проводились в инфракрасном спектре). Температура расплава падала до затвердения алюминия, так что, судя по всему, термитные реакции между алюминием и окисью железа не являются существенными. Ведь высокая температура кратко живущего экзотермика даже не пыталась конкурировать с излучающим и жаропроводящим процессом выхолаживания. Так что, предположения, сделанные Гринингом, не получили экспериментального подтверждения.

Не наблюдалось никакого заметного повреждения или хотя бы деформирования стали. При этом не наблюдались и ярко выраженные реакции. Например, когда мы выплеснули расплавленный алюминий на битый гипс и бетон (сначала влажный, затем сухой), а также на ржавую сталь. Эти эксперименты ни в коем случае не поддерживают гипотезы, будто расплав алюминия в башнях ВТЦ разрушил огромные стальные опоры в сердцевине зданий, пусть даже опоры и были изъедены коррозией и неведомо как вступили в прямой контакт с расплавленным алюминием.

Таким образом, у нас в запасе остаётся только гипотеза номер 4, то есть, мощный выброс экзотермической энергии, инициирующий реакции типа термитной (или алюмотермитной). Термит — это смесь алюминиевого порошка и окиси железа. Важно иметь всю смесь в порошкообразном состоянии. Тогда частицы окиси железа и алюминия находятся в соприкосновении и обеспечивают стремительность реакции. Если полностью смешать оба порошка и поджечь, то в результате вы получите расплавленное, раскалённое до бела железо и бело-серый перьевидный выброс оксида алюминия!

Можно использовать также другие окиси металлов, например медную окись, или такие окислители, как перманганат калия, то есть всем известную марганцовку. Любимица пиротехников, ибо многократно увеличивает энергетическую мощь термитных смесей. Другая важная добавка — сера. Этот ингредиент формирует эвтектику[198] при контакте с железом так, что оно остаётся в расплавленном состоянии даже при низких температурах. Железо плавится при температуре 1538 °C, однако с добавкой серы, температура плавления опускается ниже 1000 °C, приобретая оранжевое свечение. Таким образом, расплавленное железо плюс сера, на воздухе даёт искомое оранжевое свечение. Одновременно мы будем наблюдать и белый пепел, то есть, оксид алюминия. Выброс микроскопических капелек разогретого до расплавленного состояния металла не может обойтись без образования микросфер в соответствии с законом поверхностного натяжения. Продукты выброса содержат информацию о химической реакции, которая породила их. Это очень важная информация.

Ничего не поделаешь — теперь я решил провести эксперименты с термитной смесью. Мы с коллегами наблюдали реакцию смеси железа и серы (включая добавку оксида алюминия) в расплавленном состоянии. Во время переливания расплава из тигля в обычную ёмкость (глиняный горшок) возникло ярко-оранжевое свечение. Кроме того, капельно-воздушная смесь образовывала микросферы, которые я предусмотрительно собрал в кастрюлю. Спектральный анализ показал, что микросферы, состоят преимущественно из железа, алюминия, серы и кислорода. В ходе реакции кислород из окиси железа переходит в алюминий: 2А1 + Fe2O3 = A12O3 + 2Fe (fer fondu), ?Н = -853,5 kj/mole. Алюминий с великой «жадностью» поглощает кислород. При этом происходит мощный выброс энергии, который и приводит к расплавлению железо-алюминиевой окиси. Расплавленное железо (особенно с примесью серы) достаточно разогрето, чтобы резать сталь!

Кстати, есть видеоролик, демонстрирующий термитный «факел», плавящий металл и разрезающий стальную балку, причём, независимо от ориентации струи.[199] Корпорация «Спектр» торгует, так называемыми, «фокусируемыми струйными горелками для производства буровых работ и резки металлов», включая также работы по разрушению зданий.[200] На другом рекламном ролике фирмы «Брейниак»[201] термит помещён в глиняную ёмкость с отверстием в основании для выхода расплавленного металла. Обратите внимание на оранжевое свечение в ходе реакции и выбросы оксида алюминия. Мы видим истечение жёлто-оранжевого металла, из двигателя автомобиля. Характеристики вполне сравнимы с расплавленным веществом, которое было замечено в окнах Южной башни непосредственно перед её обрушением.[202]

И что бы вы думали? Мы провели и этот эксперимент. На сей раз при помощи термейта (thermate) мы вырезали отверстие в стальном сосуде (термейтом мы называем термитную смесь с серой). В нашем случае мы ещё добавили перманганат калия, потому что КМnО4 отличный окислитель. Доказательство высокотемпературной коррозии было налицо.

Известно, что приблизительно 1000 автомобилей на парковке под стенами ВТЦ пострадали 9/11/2001 в результате очень странной коррозии. Будем считать это дополнительной уликой. Коррозия в основном повредила крыши автомобилей, тогда, как внутри не наблюдалось никаких признаков от пожара.[203]

Некоторые автомашины были опалены пожаром, но вспомните прожиг, сделанный нами в стальном сосуде? Когда вы добавляете серу в термит, это заставляет сталь плавиться при более низкой температуре. Иначе говоря — вместо плавления при температуре приблизительно 1538 °C в нашем опыте плавление начинается при 988 °C. В итоге мы получаем сульфид и окисление стали. Так выглядит экспериментальная модель. Пострадавшие от коррозии автомобили предоставляют в распоряжении исследователя значительный объём данных по ВТЦ, подтверждающий результаты наших лабораторных экспериментов с термейтом. Более объёмистым становится и корпус доказательств, демонстрирующих, что в деле обрушения башен-близнецов и ВТЦ-7 не обошлось без алюмотермии. Мы по-прежнему разыскиваем образцы коррозии и обломки этих автомашин, чтобы проверить полученный материал на наличие следов термита. Это необходимо для дальнейшего подтверждения нашей гипотезы. Но, увы, кажется, все транспортные средства (как почти вся сталь ВТЦ) уже пущены в переплавку, что делает анализ невозможным.

Правда, одна независимая лаборатория сообщает о высокотемпературном сульфидировании и окислении, которые если не доказывают нашу правоту напрямую, то, во всяком случае, подкрепляют гипотезу о коррозии под воздействием термитной смеси в образцах стали, взятых из щебня ВТЦ-7 и башнях-близнецах:

«Свидетельство мощной высокотемпературной коррозии стальных конструкций, включая окисление и сулъфидирование с последующим межкристаллитным плавлением, наблюдается предельно отчётливо… Сильная коррозия и последующая эрозия образцов 1 [ВТЦ-7] и 2 [башни-близнецы] являются весьма необычным случаем. Никакого вразумительного объяснения источника серы не было получено[204]. Значение нашей работы над стальным образцом ВТЦ-7 и конструкционной опоры одной из башен-близнецов становится очевидным только, когда своими глазами видишь эти огромные куски повреждённого металла. Однодюймовая стальная балка скукожилась до полдюйма. Края, напоминающие свёрнутую в рулон бумагу, утончены до толщины бритвенного лезвия. Повсеместно зияющие отверстия, причём некоторые превосходят в диаметре серебряный доллар. Корпус мощной стальной опоры настолько истончён, что местами пропускает свет. Структура, напоминающая швейцарский сыр, потрясла видавших виды специалистов противопожарной защиты. Они были готовы увидеть деформации и изгибы, но никак не отверстия».[205]

Видавшие виды огнеборцы, судя по всему, прежде никогда не видели таких мощных разрушений стальных конструкций под воздействием пожара. Они потрясены увиденным. Их взору предстали истончённые стальные балки и жуткие дыры в стальных конструкциях ВТЦ-7 и башен-близнецов. Теперь мы можем указать источник высокотемпературного разрушения стали. Речь идёт о сульфидировании (добавлении серы в термитную смесь для изготовления термейта), а также об окислении (оксиды металлов, КМnO4, и т. д.) и высоких температурах (термейтные реакции проходят при температуре 2500 °C).

Совмещение данных по ВТЦ и характеристик термейта служит неоспоримым доказательством, что термейт был применён при разрушении Всемирного Торгового Центра. Использование термейта с этой целью предполагает размещение в здании термейта и, по всей вероятности, также другого материала для произведения направленного взрыва. На подготовку заведомо требуется немало времени, что, в свою очередь, подразумевает, что, по крайней мере, некоторые события 9/11 были организованы и совершены преднамеренно. Теперь необходимо серьёзное расследование для выявления виновных.

Однако при этом имеется ещё немало свидетельств, говорящих в пользу этого потрясающего вывода.