Факты, проекты, гипотезы

We use cookies. Read the Privacy and Cookie Policy

Факты, проекты, гипотезы

Поликлиника на борту

По-видимому, давние опасения: сможет ли человек длительное время существовать в условиях невесомости, разрешились в пользу оптимистов. Последние длительные рейсы советских космонавтов основательно поколебали позиции скептиков. Те отступили, но не сдались. Теперь у них остался последний довод: еще неизвестно, смогут ли люди безболезненно переносить космические путешествия в течение нескольких лет…

Действительно, смогут ли?

Сразу оговоримся: скептицизм в таком деле, как покорение космоса, не только уместен — он просто необходим. По трудности, по необычности ситуации, по количеству предсказуемых и непредсказуемых опасностей космос нельзя даже и близко сравнивать с любым деянием человека за всю его историю. Даже древние мореплаватели, отважно пересекавшие моря на утлых суденышках, были куда как в лучшем положении. Конечно, шансов погибнуть у них было гораздо больше. Но если море не разбивало корабль, они приставали к берегу такими же, какими начинали плавание. Потому что организм их все время был в привычных физических условиях — атмосферное давление, состав воздуха, земное притяжение оставались неизменными.

У современных космонавтов гораздо меньше шансов погибнуть — корабль надежно защищен от всяческих случайностей. Но вот человеческий организм… За миллионы лет он адаптировался к определенным условиям. Более того, его "узлам" необходимо земное притяжение, чтобы нормально функционировать. Попробуйте встать на голову и уже через несколько минут вы почувствуете себя не в "своей стихии". А ведь космонавты живут в похожих условиях.

Поэтому и запускают пока в космос специально отобранных и натренированных людей. Но и им приходится регулярно проводить комплекс физических упраж-пений, чтобы поддерживать свой организм в "рабочем состоянии". Но как долго это может помочь? Вот тут и необходим скептицизм: ставя "каверзные" вопросы, он заставляет отвечать на них делом — предусматривать меры защиты от возможных случайностей. Один из этих вопросов такой: если космонавт заболеет, то как его лечить?

Могут ответить: так же, как и на Земле, — с помощью лекарств. Наука еще не выставила оценки за этот ответ — и у пятерки и у двойки шансы одинаковые. Рассмотрим одну из версий скептиков. Право же, она заслуживает внимания. А версия упрощенно такова. Любое химическое лекарство — это чужеродное тело в организме. И помимо прямого лечебного действия, оказывает и побочные, далеко не всегда желательные. Но если на Земле, в привычных условиях, организм с побочными воздействиями справляется, то в космосе, где все его силы направлены на "нейтрализацию" непривычных условий, ресурсов может не хватить… Кет уж, лучше совсем без лекарств. А как же лечить, если человек в космическом корабле вдруг почувствовал недомогание? Космический корабль, орбитальная станция, рассчитанные на многолетнее обитание, должны иметь и лазарет. Я долго не мог представить себе: каким он должен быть, как будут лечить людей в невесомости? И нашел наконец ответ совсем в неожиданном месте — в Физическом институте имени Лебедева Академии наук СССР.

Рука-"невидимка"

Когда мы вошли в лабораторию, лазер уже работал, пронизывая полумрак красным лучом изумительной частоты. Даже гениальному художнику не под силу так смешать на своей палитре краски, чтобы получился такой уникальный в своей безупречности цвет. Я подставил ладонь, и багряный кружок мягко лег на нее, лаская кожу.

— А теперь смотрите, — сказал Гурген Аскарьян и слегка нажал стеклянной палочкой на противоположную сторону ладони.

И хотя я заранее знал, что должно произойти, все же невольно вздрогнул, когда часть ладони, на которую падал свет, исчезла. Она будто стала стеклянной, и лазерный луч беспрепятственно пронизывал ее. Невольно вспомнился Уэллс: ведь именно на принципе свободного прохождения света через ткани организма он "сконструировал" своего человека-невидимку.

— Передвиньте ладонь чуть влево, — попросил Гурген Ашотович.

Я передвинул, и в центре красного пятна отчетливо проступили разветвления вен. Еще движение — и на крохотном "экране" появилась кость,

— Чем не рентгеновский аппарат? — улыбнулся Аскарьян. — С той лишь разницей, что лазерный луч не только совершенно безвреден, но наоборот — проходя через живые ткани, лечит их…

Что будет, если?..

Науке отнюдь не чужды случайности. И открытия порой совершаются не как финальный этап целенаправленного поиска, а в результате стечения ряда, казалось бы, не относящихся к делу обстоятельств. Хрестоматийные примеры этого — пресловутое яблоко Ньютона или водопроводный шланг, на который наступил Данлоп и придумал пневматическую шину. Однако яблоки падали задолго до Ньютона, да и шланги цеплялись за ноги не одного Данлопа… Но только эти двое сумели вырвать обыденное явление из привычного ряда…

То же произошло и в лаборатории физики плазмы ФИАНа. Мало ли сотрудников подставляло руки под красный луч гелийнеонового лазера. Просто так, чтобы испытать приятное ощущение. Но только один из них — руководитель группы, кандидат физико-математических наук, лауреат Государственной премии Украинской ССР Г. А. Аскарьян почему-то вдруг нажал при этом на тыльную сторону ладони стеклянной палочкой. Почему? Он и сам не может объяснить. Возможно, потому, что он уже являлся до этого автором двух открытий, которые тоже начинались с вопроса: "А что будет, если?.." Как бы то ни было, он нажал, и ладонь стала невидимой. Так было открыто явление…

Оно опрокидывало все укоренившиеся представления. Ведь организм с его сложным переплетением разнородных тканей относится к так называемым мутным средам, рассеивающим и ослабляющим световые лучи. Какова бы ни была интенсивность лазерного пучка, он не может "войти" в человеческое тело глубже, чем на два миллиметра. Но стоит лишь сжать живые ткани…

Сразу же возникло предположение, что это происходит вследствие оттока крови из области сдавливания и уплотнения здесь тканей. Пока эта гипотеза не подтверждена и не опровергнута. Очевидно, так оно и есть, хотя эта гипотеза никак не объясняет другой факт: то же самое явление происходит и в неорганических мутных средах. При мне Г. Аскарьян вложил что-то между двумя поролоновыми пластинками и подставил их под лазерный луч. Наружная пластинка осталась темной. Но стоило прикоснуться к поролону той же стеклянной палочкой, как на нем четко обозначилась "начинка" — сложенные крестом проволочки.

— Мы делали и другие эксперименты, — сказал Гурген Ашотович. — Например, когда один наш сотрудник пострадал при автомобильной катастрофе, то выявили все металлические занозы, кусочки краски и стеклянные осколки в его руке. И хирурги без труда удалили их. Писали на внутренней поверхности ладони буквы, и при сжатии лазер четко "проявлял" их. Иными словами, в отличие от рентгеновского аппарата для лазера безразличен материал, скрытый в мутной среде, — он одинаково легко высвечивает металл, дерево, кость или даже краску. Такая "неприхотливость" сулит широчайшие перспективы в будущем — от контроля качества изделий до обнаружения картин старых мастеров, скрытых под более поздними слоями краски. Но не это показалось нам особенно интересным.

— А что же?

— Способность лазерного луча при определенных условиях проникать внутрь организма. Это сулит медикам такие возможности, о которых они, наверное, даже не мечтали…

Точно в мишень

Пожалуй, ни одно техническое достижение не врывалось в нашу жизнь так стремительно, как лазер. Даже автомобиль — любимая игрушка двадцатого столетия — имеет солидных предков в виде "самобеглой коляски" Кулибина, трехколесной тележки Кюньо и паровых омнибусов, громыхавших по английским булыжникам еще в прошлом веке. Лазер же в считанные годы завоевал прочные позиции в самых различных областях человеческой деятельности. В том числе и в медицине. Теперь уже ни у кого не вызывает удивления лазерная установка, работающая в районной или сельской поликлинике. Тончайший монохроматический луч сваривает сетчатку глаза или режет ткани при сложных хирургических операциях. В Центральном НИИ рефлексотерапии лазер в ряде случаев заменяет традиционные иглы, осуществляя "лазероукалывание", А ассортименту лазеров Научно-исследовательского института "Скорой помощи" имени Н. В. Склифасовского — от "мягких", ласкающих кожу, до предельно "жестких", убивающих клетки — может позавидовать иной отраслевой НИИ. Лазерами лечат трофические язвы, незаживающие раны, ожоги, стоматиты, полиневриты и другие патологические процессы, происходящие на поверхности человеческого тела.

Каков же механизм этого целебного воздействия? Пока это в точности неизвестно. Лазерный луч несет энергию. И ученые предполагают, что клетки живых тканей эту энергию накапливают, возбуждаются, становятся более активными и быстрее подавляют болезни. Это подтверждено экспериментально — под лазерным лучом все процессы обмена в клетке ускоряются и она начинает быстрее делиться.

— Однако поверхностные болезни — лишь малая часть возможных заболеваний человека, — говорит Г. Аскарьян. — При лечении многих внутренних заболеваний лазер мог бы оказаться гораздо эффективнее, чем применяющиеся до сих пор средства. Медики давно это знали, но… не имели способа "доставать" целительном лучом до внутренних очагов болезни. Открытое нами явление дает такую возможность. Более того, лазер может облучить — исцелить или разрушить — именно ту группу клеток, которую требуется, не затрагивая все остальные. До сих пор это не удавалось сделать ни одним из известных способов физиотерапевтического воздействия — пи ТВЧ, ни рентгеном, ни гамма-излучением. Все эти способы, помимо целебного, оказывают и побочные воздействия на организм, далеко не всегда желательные. Особенно гамма-излучение, разрушающее, помимо раковых, и все здоровые клетки на пути луча. А теперь мы доказали принципиальную возможность торможения с помощью лазерного луча болезненных процессов в спинном мозге и лечения нейроинфекцион-ных заболеваний — таких, как боковой амиотрофический склероз, рассеянный склероз, полиомиелит, а также лечение онкологических болезнен.

— Но разве можно так сжать человеческое тело, чтобы лазерный луч "прошил" его насквозь? Не класть же больного под пресс…

— Конечно, нет. Но даже легкое нажатие позволяет лучу углубляться на значительную величину. При этом обнаружен любопытный факт: после прекращения давления, луч еще 2–3 секунды проходит в глубь организма — столько времени нужно крови, чтобы вновь наполнить сосуды. Значит, при долгом облучении больного органа можно периодически надавливать па тело и отпускать, давая крови возможность нормально функционировать. Установив это, мы задумались: как же все-таки обеспечить лазерному лучу доступ к самым "глубинам" организма? И нашли способ…

Гурген Ашотович достал что-то с полки и поднес руку к лазеру. На его ладони засверкала тоненькая металлическая полоска. Приглядевшись, я узнал иглу от медицинского шприца.

— Через эту крохотную трубочку можно не только вводить лекарство больному, но и… лазерный луч. Доставлять его точно к "месту назначения". И не только лазерный. Дальнейшие наши исследования выявили, что и потоки заряженных частиц, рентгеновское и гамма-излучение можно также через шприц направлять непосредственно на больные клетки, не трогая остальных. Более того, если вы рассмотрите эту иглу в сильную лупу, то увидите внутри ее совсем крошечную стеклянную трубочку-световод. Он позволяет доносить целительный луч до больных клеток практически без потерь. Перспективы, которые открывает такая терапия, трудно переоценить.

Космос начинается с Земли

Под лазерным лучом клетки становятся более, активными… Но ведь именно на это рассчитано и действие многих лекарств — влить в клетку энергию, заставить ее активнее функционировать и в результате победить болезнь. Конечно, это лишь грубая схема тончайших процессов, происходящих в организме, но ведь многого мы пока что и не знаем, о многом судим лишь приблизительно, Зачастую нам известны лишь начальный и финишный этапы борьбы с болезнями, и пока это еще наука выявит звено за звеном всю цепочку химических реакций, происходящих в клетке, все связи между ее компонентами… Но ведь это не мешает нам пользоваться лекарствами…

Не помешает это нам пользоваться и лазером в качестве "универсального исцелителя". Одно то, что лазерный луч не влечет за собой никаких побочных воздействий, открывает перед ним широчайшие медицинские перспективы. И особенно в космосе, где так необходимо "чистое" воздействие на организм.

И представляя себе космический лазарет, я вижу не традиционные стеллажи и холодильники, где хранятся капли, порошки, микстуры. В моем воображении встает физическая лаборатория, где царствует компьютер. А хозяин ее — специалист, имеющий два высших образования: медицинское и физическое.

Член космического экипажа почувствовал недомогание и пришел к врачу. Первым делом надо поставить диагноз. Но у "космического" доктора вы не увидите традиционного стетоскопа. Диагноз ставит машина. Десяток-другой датчиков, укрепленных на разных частях тела, позволяют компьютеру точно установить место и характер болезни. Такие электронные диагносты уже работают в ряде стран, и их "профессиональный уровень" постоянно повышается. Следующий этап — выбор и введение лекарства. Машина рассчитывает трассу прохождения луча через организм с точностью попадания — до одной клетки. Пока еще такая точность на Земле не достигнута. Методика, разработанная академиком АМН СССР Н. П. Бехтеревой и с успехом примененная ею на практике, позволяет компьютеру попадать золотым электродом в группу клеток. Но надо думать, когда медицинский компьютер выберется в космос, он станет более метким…

Так что, как видите, на Земле уже многое сделали для космического лазарета. Осталось последнее — разработать лазерную терапию. Определить оптимальную интенсивность, время и объекты излучения для каждой болезни. Что ж, за этим дело не станет. После опубликования Г. А. Аскарьяном результатов своих исследований то в одном, то в другом НИИ медики начинают пробовать лазер для лечения внутренних болезней. Конечно, впереди — огромная работа. Пройдут годы и десятилетия, прежде чем будет получен готовый к внедрению результат. Но ведь и регулярные космические рейсы промышленного назначения тоже начнутся не завтра…

Альберт Валентинов

Вечно юная вселенная

Когда несколько лет назад астрономы попытались взглянуть на небо, если можно так выразиться, "рентгеновскими глазами", они увидели картину, не имеющую ничего общего с тем звездным небом, которое на протяжении тысячелетий созерцало человечество. Исчезли привычные созвездия, а вместо них обнаружились странные космические объекты, сияющие в миллиарды раз ярче, чем Солнце. Правда, сияние это рентгеновское и потому невидимое невооруженному человеческому глазу.

Один из самых мощных рентгеновских источников находится в созвездии Лебедь. Астрономы предполагают, что здесь в паре с голубым сверхгигантом НD 226868 вращается вокруг общего центра масс один из самых таинственных небесных объектов. Это — огромный газовый диск, который, медленно скручиваясь по спирали, разогревается до десятков миллионов градусов. При такой температуре вещество излучает энергию в невидимом для глаза рентгеновском диапазоне, причем мощность излучения в диске непрерывно возрастает от внешнего края к центру. И вдруг вблизи центра мощность излучения резко падает, и все исчезает, вещество диска и излучение "проваливается в никуда", в знаменитую "черную дыру"…

Так ученые называют коллапсар — сверхплотную звезду, теоретически предсказанную еще Лапласом. Радиус коллапсара — три километра, а масса примерно в десять раз превышает солнечную. Поле тяготения такой звезды настолько велико, что вторая космическая скорость — то есть скорость, которую должно приобрести тело, чтобы быть в состоянии улететь с ее поверхности, — должна быть больше скорости света. Поскольку вещество не может двигаться быстрее света, все, что приближается к коллапсару, исчезает без следа и увидеть, как он выглядит, невозможно. Тем не менее можно обнаружить его присутствие.

Падение вещества на "черную дыру" сопровождается грандиозными вспышками, За несколько миллисекунд выделяется энергии больше, чем при взрыве 100 миллиардов водородных бомб. И вся эта энергия излучается в космическое пространство в виде мощных импульсов рентгеновских лучей. А что же происходит с веществом, попавшим в объятия космического спрута? Что происходит в его таинственных недрах?

Об этом можно строить пока лишь догадки, и недостатка в гипотезах — от самых утилитарных до самых фантастических — нет. Одни считают, что коллапсары — это своеобразные мусоропроводы вселенной, куда сбрасывается отработанная материя. А где-то в противовес "черным" есть будто бы и "белые дыры", через которые из другого пространства изливаются в наш мир все новые и новые порции вещества и которые как бы связаны с "черными дырами" туннелями с односторонним движением.

Это дает пессимистам возможность утверждать, что все вещество нашей вселенной в конце концов будет поглощено "черными дырами" и мир перестанет существовать. Так, по подсчетам Я. Зельдовича и И. Новикова, в "черные дыры" уже провалилось несколько десятков миллионов звезд.

Им возражают оптимисты, по мнению которых поглощение вещества "черными дырами" рано или поздно прекратится и начнется новый процесс: контрдавление остановит сжатие, и вещество снова хлынет наружу. Наконец, скептики отвергают доводы тех и других: полно, может быть, никаких "черных дыр" вообще нет…

Так или иначе, в споры вокруг коллапсаров втянуты все астрономы и астрофизики, и все согласны: наука приблизилась к одной из сокровеннейших тайн мироздания, поскольку никакой непосредственной информации от "черной дыры" получить невозможно…

"Все не так безнадежно, как может показаться на первый взгляд!" — таково было мнение Николая Александровича Козырева, покойного профессора Пулковской обсерватории, планетолога и астрофизика, на протяжении многих лет занимавшегося исследованием физических свойств времени. "Черные дыры", — считал он, — страшное место. Все, что попадает в сферу их влияния, разгоняется до скорости света и исчезает из поля зрения наблюдателя. Честно говоря, поначалу я усомнился в их существовании, но потом решил провести эксперименты.

Механические системы, которыми я пользуюсь при астрономических наблюдениях, улавливают не лучистую энергию звезд, как обычно, а те изменения, которые вносят космические тела в физические свойства времени. Несмотря на то, что Лебедь Х-1 находится от нас на огромном расстоянии — 10 тысяч световых лет, показания моих приборов отметили необычную активность, или, как я называю, плотность времени в окрестности этого невидимого объекта. Значит, "черные дыры" действительно существуют. По моим многолетним наблюдениям, особенно интенсивно выделяют время процессы, происходящие в условиях огромных гравитационных полей, при большом сжатии вещества. Я думаю, что сверхплотные тела — это разгорающиеся звезды, а не умирающие, как это принято считать.

Энергии из вселенной некуда деваться, и "черная дыра" совсем не бездна, где она пропадает безвозвратно. Это своеобразный механизм, с помощью которого время передает энергию в пространство, а энергия через время возвращает материю в общий круговорот. Происходит постоянное обновление, поддерживающее жизнеспособность Мира. И все разговоры о тепловой смерти вселенной, основанные на частном случае второго начала термодинамики, не отражают закономерностей развития вселенной".

Все началось со звезд

Почти каждое крупное открытие в области физики астрономы и астрофизики сразу же пытаются применить для объяснения процессов, происходящих в звездах. Так случилось и со вторым началом термодинамики — "энтропийным постулатом" немецкого физика Р. Клаузиуса, положившим начало столетней дискуссии о тепловой смерти вселенной. Сформулированный Клаузиусом закон очень прост: "Теплота не может переходить сама собой от более холодного тела к более теплому". Но посмотрите, какие глобальные следствия вытекают из этой почти самоочевидной формулировки.

Все виды движения в природе благодаря трению легко переходят в тепловое. Температуры тел, обменивающихся теплотой без совершения механической работы, постепенно выравниваются, и в конце концов достигается "некоторое мертвое состояние инерции", в котором невозможны больше никакие изменения, никакие процессы. Так возникла идея умирающего мира, в котором Солнце и звезды должны были постепенно угаснуть, температура всех тел стать одинаковой, все движения и изменения — замереть.

Против такой перспективы возражали многие ученые. Столетов, Тимирязев, Вернадский были убеждены, что в природе существует обратимость. Циолковский вообще называл теорию тепловой смерти антинаучной.

Все понимали, что этот спор будет решен тогда, когда ученые смогут ответить на вопрос: что является причиной свечения звезд?

Еще в середине XIX века Гельмгольц и Кельвин полагали, что звезды — это огромные сгустки газа, которые, сжимаясь под действием гравитационных сил, нагреваются и излучают тепло и свет. Однако расчеты показали: при таком предположении жизнь Солнца могла составить лишь 30 миллионов лет. По имеющимся же достоверным данным, возраст Солнца исчисляется несколькими миллиардами лет.

Открытие ядерных реакций дало мощную поддержку идее тепловой смерти. Ведь какое бы топливо ни сгорало в недрах Солнца, рано или поздно оно кончится, и тогда неизбежно наступит то "мертвое состояние инерции", о котором писал некогда Клаузиус. В 1939 году Ганс Бете рассчитал, какие термоядерные реакции и при каких условиях могут поддержать энергию звезд. Эти расчеты получили всеобщее признание, хотя довольно скоро выяснилось, что далеко не во всех звездах достигается температура в 15 миллионов градусов, необходимая для тех реакций, которые рассматривал Бете…

В 1953 году в "Известиях Крымской астрофизической обсерватории" появилось сообщение: профессор Пулковской обсерватории Н. А. Козырев утверждал, что свечение звезд вызывается не термоядерными реакциями, что звезды не сжигают никакого "горючего" — ни органического, ни ядерного. К этим выводам ученого привел разработанный им метод исследования физического состояния звезд.

Обычно исследователи начинают с теоретического построения модели звезды, исходя из априорного предположения о природе источника звездной энергии. Так была построена и общепринятая модель звезды с термоядерным источником энергии, которая, по словам академика В. А. Амбарцумяна, "…не дала плодотворных результатов, так как не предсказала пи одного нового факта и поэтому не помогает наблюдениям".

Пользуясь своим методом, Козырев попробовал решить обратную задачу: без построения моделей и гипотез выяснить, что происходит со звездами.

Сейчас для 200 звезд установлены основные характеристики: их масса, радиус и светимость — количество энергии, которое звезда излучает в секунду.

Масса и радиус позволяют рассчитать плотность и давление внутри звезды. Масса, разделенная на объем, дает среднюю плотность. Отношение давления к плотности позволяет рассчитать температуру внутри звезды. Светимость нагретого газового шара зависит от температуры и условий теплопередачи, которые, в свою очередь, определяются температурой и плотностью. Значит, разделив известную светимость на массу, можно определить количество энергии, которое в среднем должен вырабатывать каждый грамм вещества, чтобы компенсировать расход энергии и обеспечить длительное существование звезд.

— Когда я проанализировал полученные результаты, — рассказывал Николай Александрович, — оказалось, что температура в звездах ниже, чем это необходимо для термоядерных реакций, что в них вообще нет никаких — источников энергии, а светимость зависит от массы и радиуса.

Ведь любой источник энергии, поддерживающий светимость, работает по своим законам, совершенно непохожим на законы теплопередачи, и накладывает жесткие ограничения на звезду: для ее длительного существования нужно, чтобы приход энергии всегда равнялся расходу. А наблюдения показали, что светимость не зависит от ограничений — их нет. А значит, нет и источников звездной энергии.

Звезда излучает так, как будто бы она остывает и никак не может остыть. Получается, что потеря энергии не ведет к перестройке звезды (она должна, остывая, сжиматься, а этого нет). Звезды просто живут, и в силу процессов, которые идут там, дополнительно вырабатывают энергию, компенсирующую эти потери. Механизм свечения Солнца такой же, как звезды, и, по моим расчетам, температура внутри его слишком мала, чтобы оно могло быть термоядерным реактором, как полагает большинство астрономов.

Интересный эксперимент провел американский ученый Р. Дэвис. Для изучения недр Солнца он использовал нейтронный телескоп. Название телескопа довольно условное — на глубине полутора тысяч метров в заброшенном золотом руднике был поставлен огромный бак с тетрахлорэтиленом. Толща скал экранирует его от любых излучений, кроме нейтринного. Эта частица не имеет ни массы покоя, ни электрического заряда и летит со скоростью света, свободно проникая через любые препятствия (чтобы долететь до Земли, ей нужно всего восемь минут). Но в некоторых случаях нейтрино взаимодействует с атомами хлора-37: пролетая сквозь жидкость, оно превращает их в атомы радиоактивного аргона-37. По появлению этого изотопа и можно установить, есть ли в излучении Солнца нейтрино. Если в недрах Солнца идет термоядерный синтез, то при этом обязательно выделяется нейтрино. В течение чуть ли не десяти- лет не было зарегистрировано ни одного нейтрино. И Дэвис пришел к твердому убеждению: температура внутри Солнца намного меньше, чем нужно для термоядерной реакции.

Правда, этот факт некоторые ученые истолковывают следующим образом: Солнце — пульсирующая звезда, термоядерные реакции в нем идут периодически — то бурно, то медленно. Сейчас наше светило как бы затухает, поэтому реакции в недрах его идут медленно и доберутся до поверхности только через несколько миллионов лет. Вот тогда-то и появятся нейтрино.

Так что же действительно происходит в звездах? Откуда звезда черпает возможность бесконечно испускать энергию, не нарушая при этом закон сохранения энергии?

Козырев так ответил на эти вопросы:

— Отсутствие источников энергии показывает, что звезда живет не своими запасами, а за счет прихода энергии извне. Откуда же берется эта дополнительная энергия?

Звезды живут всюду, где есть пространство и время. Пространство пассивно, оно не может быть источником энергии. Это лишь арена, где разворачиваются события мира. А время? Где есть пространство, там есть и время. Что можно сказать о времени? Для нас время — понятие геометрическое — длительность, измеряемая часами. Но у времени могут быть и физические свойства, благодаря которым все процессы природы происходят не только во времени, но и с его участием в них.

В мире все подчинено закону причин и следствий. Причина превращается в следствие в течение промежутка времени с определенной скоростью. Скорость — свойство физическое, а всякое физическое свойство активно. Значит, время может взаимодействовать с веществом, изменять его состояние, а следовательно, и его энергию.

Выходит, можно построить машину, которая из этого свойства времени будет извлекать энергию.

Такими машинами, по мнению Козырева, и являются звезды.

Прыжок через бездну

Всякая замкнутая система стремится к равновесию.

Система в равновесном состоянии не знает ни прошедшего, ни будущего, здесь не существует ни причин, ни следствий. Но жизнь в нашем обычном мире постоянно движется от прошлого к будущему, причины всегда порождают следствия и всегда отличаются друг от друга, иначе их нельзя было бы найти. Значит, в природе существует некоторая несимметричность, свойственная неравновесному состоянию.

Какова же роль времени в этом спектакле? Несимметричность, наблюдаемая в мире повсеместно, и есть проявление направленности или несимметричности самого времени.

Вмешательство времени вносит в систему отличие будущего от прошедшего, препятствуя переходу его в равновесное состояние.

Между причиной и следствием всегда остается какой-то, пусть самый ничтожный, промежуток — они не могут занимать одно и то же место. И вот в какой-то точке пространства, в течение какого-то времени происходит таинственное превращение прошлого в будущее. Эта точка не принадлежит ни прошлому, ни будущему. Здесь и передается действие одного материального тела на другое, не сила в виде импульса, а результат — дополнительная энергия — передается временем следствию.

Козырев считал, что скорость превращения причины в следствие — течение или ход времени — величина универсальная и не зависит от свойств материальных тел.

Поскольку у пространства нет преимущественного направления, но существует абсолютное различие правого от левого, то скорость хода времени определяется линейной скоростью поворота причины относительно следствия.

Чтобы выяснить характер взаимодействия различных свойств времени с материальными телами, Козырев поставил опыты, в результате которых выяснилось, что ход времени не может вызвать одиночную силу, он дает пару внутренних, противоположно направленных сил. В отличие от силовых полей время не передает импульса, но может сообщить системе дополнительную энергию в момент вращения.

На этом принципе "работают" звезды. Можно сказать, что они сопротивляются переходу в равновесие, выбрасывая огромное количество энергии. Например, наше Солнце ежесекундно теряет в излучении 3 миллиона тонн своей массы. И это никак не сказывается на его температуре. Солнце — идеальный термос, оно остывает всего на треть градуса в год!

Или возьмем самое знакомое нам астрономическое тело — Землю. Ее геологическая история ясно свидетельствует, что жизнь нашей планеты идет в непрерывной борьбе сжатия с расширением. Периоды сравнительного тектонического покоя, когда земной шар сжимается, неоднократно сменялись бурными взрывами, вулканической деятельностью.

А Луна? Казалось бы, что нового может быть на Луне? Мертвое тело, закончившее свою жизненную эволюцию, — так полагало большинство. Но Козырев был убежден, что Луна — живая.

Он рассчитал, что большое космическое тело не может быть остывшим. Поскольку кристаллические структуры внутри его под действием сил тяжести раздавлены, то в нем возможны деформации и, следовательно, там идут те же процессы, что и в звездах. Луна достаточно большое тело, чтобы внутри ее в процессе сжатия выделялась энергия. Она должна быть живой. Козырев начал постоянные наблюдения за кратером Альфонс, и счастливый случай пришел на помощь тому, кто ждал его. В ноябре 1958 года он обнаружил вулканическое извержение в кратере Альфонс и получил уникальную спектрограмму этого явления.

В декабре 1969 года Комитет по делам изобретений и открытий при Совете Министров СССР присудил Николаю Александровичу Козыреву диплом об открытии лунного вулканизма. А в 1970 году Международная академия астронавтики наградила его именной золотой медалью с бриллиантовым изображением Большой Медведицы.

По изысканиям Козырева, интенсивность потока времени не всегда одинакова, она меняется от места проведения опыта, от времени года, характера процессов, происходящих вблизи системы. Он считал, что время обладает переменными свойствами — степенью активности или плотностью. Одни процессы усиливают плотность и, значит, выделяют время. Другие — наоборот, поглощают время, уменьшая его плотность. По мнению Козырева, наблюдения за Солнцем во время затмения 1961, 1966, 1971 годов показали, что процессы на Солнце увеличивают плотность времени. Получается, что Солнце — действительно машина, вырабатывающая энергию.

Изменение плотности времени отражается и на нашем ощущении длительности минут и часов — они "тянутся" или "бегут", так как промежуток времени — секунда — имеет разную результативность. Поскольку время не распространяется, а появляется сразу во всей вселенной — поток времени существует постоянно и взаимодействие с процессами и материальными телами происходит мгновенно. А раз ничто не движется, то нет и противоречия со специальным принципом относительности. Н. Козырев считал, что возможна мгновенная связь явлений через время, как бы далеко ни происходили явления друг от друга.

Опыты с несимметричными весами, чутко реагирующими на необратимые процессы, обнаружили еще одно интересное свойство, которое Козырев назвал "действием времени". Например, тело, поглотившее действие времени, отдает его не сразу, оно как бы запоминает происходящие около него явления, на нем остается "отпечаток времени". Крутильные весы тоже "запоминают" происшедшее событие — после прекращения воздействия они долго стоят на месте, а затем как бы нехотя возвращаются к первоначальному положению. Еще одна удивительная способность действия времени — оно отражается от зеркальной поверхности по законам геометрической оптики. Это открытие позволило Козыреву наблюдать процессы, происходящие на космических телах, с помощью зеркального телескопа, откликающегося на физические свойства времени.

Возможность мгновенной связи очень важна для астрометрии. Ведь мы видим звезду не там, где она находится в настоящее время, а там, где она была миллионы лет назад. По мнению Козырева, его метод позволяет установить истинное положение звезды. Наблюдения местоположения Проциона, сделанные этим методом, подтвердились расчетами.

Николай Александрович испробовал свой метод и в исследованиях самых необычных объектов вселенной — сверхплотных тел.

В звездном мире такими системами считаются белые карлики, нейтронные звезды, пульсары и "черные дыры". Несмотря на разнообразный "внешний вид", у них у всех есть одно общее — чудовищная плотность. Белые карлики — это звезды с массой нашего Солнца, уместившиеся в объем Земли. Один кубический сантиметр его весит полторы тонны. А радиус нейтронной звезды при массе немного меньше солнечной может достигать десяти километров. Если, по словам одного американского ученого, ложку такового вещества уронить на пол лаборатории, то она пробьет насквозь земной шар. Ну а "черные дыры" в этом смысле вообще не имеют соперников.

Так вот объекты, считавшиеся "звездными огарками" (белые карлики) и "гравитационными могилами" ("черные дыры"), по Козыреву, оказались разгорающимися телами. Помимо рентгеновского источника Лебедь Х-1, Козырев провел наблюдения центра Галактики. Центр вращения нашей Галактики недоступен оптическим телескопам, так как его скрывает плотная межзвездная среда, поглощающая почти все излучение в оптическом диапазоне. По данным радио-, инфра- и рентгеновской астрономии ученые высказывают предположение, что здесь скрыто плотное скопление звезд, динамически оно ведет себя как массивное твердое тело с массой около десяти миллиардов солнечных масс, вращающееся вокруг своей оси. Звездная плотность там в миллион раз больше, чем в солнечной системе. Кроме того, радиоастрономы Лейденской обсерватории обнаружили, что из центра выбрасывается огромное количество водорода в виде двух ветвей и одна из них приближается к нам, другая удаляется от нас. По подсчетам астрономов, из центра Галактики ежегодно выбрасывается масса мате-рии, равная Солнцу. Предполагают, что компенсация расхода такого количества материи происходит в результате постоянного обмена в пределах Галактики.

И вот здесь приборы Козырева также зарегистрировали значительную активность времени.

Эти опыты, по мнению Николая Александровича, свидетельствуют о жизнеспособности нашего мира, в котором время поддерживает гармонию жизни и смерти и препятствует распространению хаоса и беспорядка.

Оксана Перфилова

Загадки Урана

26 апреля 1781 года в Лондонском королевском обществе Вильям Гершель сделал доклад об открытом им 13 марта новом небесном теле. Доклад назывался: "Сообщение о комете". Так началась история открытия и изучения планеты Уран, история, полная недоразумений, сюрпризов и драматических ситуаций.

Правда, в роли кометы Уран выступал недолго. Летом этого же года петербургский академик Андрей Иванович Лексель, рассчитав орбиту нового небесного объекта, объявил, что Гершель открыл не комету, а седьмую планету солнечной системы. По его расчетам, новая планета в 19 раз дальше от Солнца, чем Земля, а период ее обращения равен 84 годам. Новой планете дали имя древнего бога Уран.

Все вроде бы встало на свои места, вот только Уран заметно отклонялся от пути, по которому согласно расчетам он должен был следовать. Это была первая загадка Урана, решить которую астрономам удалось только через шестьдесят пять лет. Поначалу никто не мог помять, в чем тут дело, но в конце концов пришли к выводу, что нужно искать за Ураном еще одну планету.

Иоганн Мэдлер, директор обсерватории в Дерпте (ныне город Тарту), в своей книге "Популярная астрономия", изданной в 1841 году, писал по этому поводу: "Мы приходим к выводу о существовании планеты, действующей на Уран и возмущавшей его. Мы можем даже выразить надежду, что в некотором будущем математический анализ реализует свой наибольший триумф — открытие, сделанное глазами разума там, куда непосредственно взор человека не в состоянии проникнуть". Пророчество Мэдлера вскоре осуществилось. Ур-бен Леверрье, знаменитый французский астроном, теоретически предсказал место на небе, где надо искать неизвестную планету, а в 1846 году профессор Галле и его студент Аррест именно там и нашли новую планету. Назвали ее Нептун.

Дальнейшее изучение Урана шло без потрясений. Выяснилось, что атмосфера его состоит в основном из водорода, гелия и небольшой примеси метана. Самая высокая температура на обращенной к Солнцу стороне примерно минус 220 градусов. Плоскость экватора Урана в отличие от других планет наклонена почти перпендикулярно к плоскости орбиты, так что он вращается "лежа на боку".

Период вращения Урана вокруг оси точно не установлен. Одни исследователи считают, что сутки этой планеты равны 10,8 земного часа, по другим данным — 15,57 часа и даже около 24 часов. Такое резкое различие в оценке периода вращения объясняется не только трудностями наблюдений Урана. Оказалось, что его видимая поверхность вращается с разными скоростями, так же, как на Юпитере и Сатурне, быстрее всего вращаются экваториальные районы.

Не так давно американский астроном Бэдфорд Смит обнаружил, что атмосфера планеты простирается значительно дальше, чем полагали, и окружена тонкими облаками из замерзших кристаллов метана. Сделал он это открытие при помощи очень чувствительного электронного устройства на приборах с зарядовой связью.

Обычно изображение Урана получается с затемненными краями, и поэтому точно измерить диаметр планеты не удавалось. На фотографии же, полученной с помощью этого миниатюрного устройства, по краям диска видно слабое свечение, по словам Смита, "тонкое, как дымок сигареты на темном фоне". По его расчетам, радиус планеты оказался равен 27 900 ± 500 километров, а не 25 900, как считали раньше.

Изображение было настолько четким, что Смиту удалось даже измерить сплющенность Урана — полярный и экваториальный радиусы; на фотографии хорошо видны более плотные возле полюса облака замерзшего метана.

10 марта 1977 года Уран преподнес сюрприз. Многие обсерватории готовились к этому дню, чтобы наблюдать затмение Ураном не очень яркой звезды. Астрономы надеялись в течение часа получше рассмотреть атмосферу планеты и уточнить ее диаметр.

Но события развернулись совсем не так, как предполагали. По словам Джеймса Эллиота, руководителя группы астрономов, которые находились в этот момент на борту летающей обсерватории НАСА, за несколько минут до затмения звезды они пережили настоящее потрясение. Самописцы, записывавшие интенсивность света от звезды, внезапно метнулись к нулю, а затем вернулись в нормальное положение. Первой мыслью было, что испортилось оборудование. Затем они помяли, что происходит что-то загадочное. Но что?

Спады и подъемы повторялись пять раз, один продолжался три секунды, остальные примерно по секунде каждый. С противоположной стороны (когда звезда выходила из-за Урана) происходило то же самое. Сначала Эллиот предположил, что это пояс маленьких лун. Но ведь свет был не полностью затемнен, а лишь ослаблен на 50–90 процентов. Тогда он понял, что это могут быть только кольца Урана.

После анализа наблюдений, сделанных другими обсерваториями, Эллиот пришел к выводу, что Уран имеет пять колец, состоящих из мельчайших темных частиц. Каждое из четырех внутренних колец, которые он назвал альфа, бета, гамма и дельта, может быть шириной в 10 километров, а внешнее, эпсилон, — около 100 километров. И тут выяснилась странность кольца эпсилон: оно затемняло свет звезды на 90 процентов, тогда как остальные кольца только на 50. Кроме того, в одном месте его внутренний край ближе к планете на 600 километров.

Джеймс Эллиот сделал попытку объяснить эту странность: "Внешнее кольцо выглядит наиболее загадочным, так как не кажется круглым, оно может быть наклонным, может иметь форму эллипса, а возможно, здесь вообще не одно, а два кольца. Но чтобы выяснить это, нам, пожалуй, придется ждать 1986 года, когда "Вояд-жер-2" доберется до Урана".

Однако одно предположение ученого вскоре подтвердили Кит Мэтьюз и Джерри Нейбауэр из Калифорнийского технологического института, впервые получившие непосредственное изображение колец Урана. На фотографии загадочное внешнее кольцо выглядит действительно эллиптическим и неодинаковой ширины. "Внизу" оно толще, а "вверху" совсем тонкое, в какой-то мере его можно назвать подковообразным. Большая эллиптичность и разная ширина эпсилон-кольца позволили астроному Петеру Голдриху вычислить период вращения Урана: по его вычислениям он равен 15 часам. Масса его, считает Голдрих, эквивалентна массе спутника 20 километров в поперечнике.

Что же известно на сегодняшний день о кольцах Урана? Что они существуют, отражают света меньше, чем чернейшая угольная пыль и… что они загадочны. Теоретически предполагается, что ширина колец меняется, а ширина внешнего кольца вообще в одной точке может обращаться в нуль.

Из чего состоят кольца? Неизвестно, Но гипотез несколько. Некоторые астрономы считают, что кольца состоят изо льда. Большинство же убеждено, что из темных частиц, по своей природе похожих на поверхность Оберона и Титании — самых больших спутников Урана. А по мнению известного американского астронома Ван Фландерна — из газа. Его интересная гипотеза объясняет некоторые странности колец.

"Невидимые и немыслимые образования", — говорит Ван Фландерн о кольцах Урана. По его расчетам, каждое кольцо состоит из газообразного материала, расположенного вдоль орбит невидимых мини-спутников, и является временным и непрочным образованием. Основной поставщик этой тонкой материи — кометы, которые, обращаясь вокруг Солнца, постоянно теряют свое вещество. В подтверждение правдоподобия, своей гипотезы он приводит такую аналогию: когда кометы огибают Солнце, кольца газа распространяются вдоль орбит спутника Юпитера Ио и сатурновой луны Титана. Так почему бы и Урану не захватить часть пометной материи своими спутниками? Идея Ван Фландерна объясняет также изменчивость и незначительную ширину колец Урана: газ в его кольцах постепенно рассеивается, но периодически восстанавливается из захваченного пометного вещества.

На этом можно было бы и закончить, если бы не еще один сюрприз, который исподволь готовил Уран.

В разгар дискуссии о загадочных кольцах планеты радиоастрономы Клейн и Турегано сообщили о своем открытии: они обнаружили, что радиоизлучение из плотных глубинных слоев атмосферы Урана по крайней мере за десятилетие усилилось на 30 процентов. Похоже на то, что атмосфера планеты разогревается, и очень быстро. Если бы подобное явление произошло на Земле, то температура воздуха поднялась бы до 120 градусов по Цельсию.

Самое простое и очевидное объяснение этого феномена исходит из необычной ориентации Урана. На своем пути вокруг Солнца он поворачивается к нему то одной стороной, то другой. Период обращения Урана 84 года, и за это время планета 42 года повернута к Солнцу южным полушарием, и 42 года — северным. Каждые 84 года наступает период, когда северный полюс планеты направлен прямо на Солнце. Сейчас как раз и близится это событие. Правда, далеко нс всех астрофизиков устраивает такое объяснение, но более правдоподобного пока пет. И эту загадку ученые надеются разрешить с помощью "Вояджера-2".

Существуют ли НЛО?

Ширли Макивер (Йоркский университет, Торонто) провела социологическое исследование, которое показало, что у сторонников существования неопознанных летающих объектов (НЛО) в среднем через два года наступает "кризис веры": то "реальный объект" оказывается совсем не таким, каким хотелось бы его видеть, то не удается найти веских доказательств его существования, и дело сводится к вере в недоказуемую гипотезу. Возможно, многие люди подсознательно понимают, что гипотеза является не просто недоказуемой, а ложной, и теряют интерес к НЛО.

Анализ сообщений о наблюдениях НЛО показывает, что никаких мифических НЛО нет, а имеется набор фактов, которые объясняются различными естественными причинами.

Можно сделать некоторую классификацию НЛО. Так, к одному из видов НЛО относятся объекты овальной формы диаметром 1–3 метра, которые вращаются вокруг вертикальной оси вблизи земной поверхности и, видимо, излучают широкий спектр. электромагнитных волн. Правильнее их назвать неопознанными атмосферными явлениями.