Время для всех идет одинаково
Время для всех идет одинаково
На протяжении тысячелетий человечество жило представлением о непреложности времени. Было даже нелепо предполагать, что время может ускоряться и замедляться. Интересно, что с точки зрения физики понятие времени даже не с чем сравнить, это как бы самостоятельно и изначально существующая константа, не имеющая аналогов. Ведь времени действительно нельзя дать определение. Все знания человечества построены на принципе сравнения с уже известным. А что было до времени?
Вплоть до XX в. вся система физического и математического знания отправной точкой считала трехмерность этого пространства, в котором время являлось постоянной и абсолютной величиной. Попробуем проследить ход изменения научного мировоззрения, приведшего постепенно к революционному повороту в осмыслении пространства и времени. Еще великий Аристотель заложил основы научного исследования, пытаясь объяснить законы, управляющие этим миром. Система мироздания, по Аристотелю, была сконцентрирована вокруг Земли, являвшейся неподвижной, все остальные планеты, видимые на звездном небе, двигались вокруг нее по окружности, следовательно, Вселенная представляла собой замкнутую сферу.
Именно Аристотелем был сформулирован первый закон свободного падения тел на Землю, в котором утверждалось, что «в безвоздушном пространстве все тела падают бесконечно быстро», скорость же падения пропорциональна весу тела. Эта система просуществовала почти две тысячи лет практически без изменений, хотя в отдельные периоды исследователи замечали «слабые» места «Метафизики» Аристотеля. Первую обоснованную попытку изменить взгляд человечества на закономерности, предопределяющие существование и движение тел, сделал итальянский ученый Галилео Галилей.
Разработав собственную модель телескопа, он наблюдал за движением небесных тел, постепенно приходя к выводу, противоречащему геоцентрическим представлениям того времени: Земля вращается вокруг Солнца, Вселенная же, вероятно, бесконечна.
Проводя мысленный эксперимент по падению тела в шахте, проходящей через всю толщу Земли насквозь, он пришел к выводу, что в безвоздушном пространстве тело будет двигаться сначала ускоренно, затем замедленно, на выходе же из шахты скорость тела будет равна первоначальной. Скатывая шарики с наклоненных под различными углами плоскостей, он постепенно приходит к пониманию закона инерции, по которому тело сохраняет состояние покоя или прямолинейного движения в случае отсутствия действия на него силы.
Галилей на основании данных своих экспериментов установил, что свободно падающее тело движется с постоянным ускорением, брошенное же под углом к горизонту тело движется сначала равномерно прямолинейно по горизонтали, а затем равноускоренно по вертикали, в целом же по особой траектории — параболе.
Очень важным этапом в понимании относительности пространства и времени является открытие Галилеем принципа относительности, согласно которому «для двух наблюдателей, движущихся относительно друг друга равномерно и прямолинейно, наблюдаемые ими движения с учетом разницы в начальных условиях одинаковы». Математическое обоснование этот принцип получил лишь с открытием основных законов механики Исааком Ньютоном, распространение же на остальные разделы физики — в специальной теории относительности Альберта Эйнштейна.
Однако вернемся к хронологической последовательности. Итак, согласно Ньютону, пространство и время являются абсолютными величинами, не зависящими от внешних обстоятельств. Пространство бесконечно, однородно в трех измерениях, время также бесконечно и однородно, но в одном измерении; обе эти величины существуют помимо человеческих представлений о них.
Сама идея о законе всемирного тяготения пришла к Ньютону, как известно, во время наблюдения за падением яблока. Ньютон рассуждал следующим образом: на яблоко и гораздо более высоко расположенные тела (Луна, Солнце) должна действовать имеющая одну и ту же природу сила тяготения. Между ускорениями, с которыми все тела «падают» на Землю, должна существовать какая-то связь. Предположив, что орбита Земли круговая, он определил следующую закономерность: сила тяготения убывает обратно пропорционально квадрату расстояний от тела до Земли.
Вся сумма наблюдений и рассуждений Ньютона, описанных в его «Началах», сводится к трем известным всем в настоящее время законам движения, которые вкупе с законом всемирного тяготения указали на единые механизмы существования всего на нашей планете. Ньютону, знакомому с идеями Коперника, необходимо было ввести понятие универсально абсолютного пространства, одинакового и неподвижного в любой точке Вселенной, и абсолютного времени, в которых бы имели место прямолинейные движения и покой. С введением этих абсолютных констант законы движения принимали космическую значимость. Именно благодаря формулировке этих законов стал возможным дальнейший технический прогресс человечества и, собственно, полет в космос.
Итак, в эпоху Ньютона (конец XVII в.) время с позиции науки сохраняло свою абсолютность, или равномерность, и неизменность под воздействием внешних обстоятельств. Несмотря на всю свою значимость, законы Ньютона не могли объяснить многих вещей. Так, например, не было возможности объяснить мгновенную передачу тяготения с Земли на любое тело, удаленное как угодно далеко.
Другим значительным противоречием была несопоставимость 3-го закона и понятия абсолютности пространства: если тело с определенной массой в силу своей инерции сопротивляется действию ускоряющего пространства, то и само пространство должно испытывать влияние этого тела на себя, но оно же неизменно по самому определению. Как все это соотнести?
Согласно концепции об абсолютном пространстве, равномерное прямолинейное движение и покой можно легко разграничить, однако сами принципы механики Ньютона отрицают физическое различие между этими двумя состояниями. Иначе говоря, относительность различий покоя и равномерного движения не может существовать в условиях абсолютных пространства и времени. Стремясь логически ликвидировать эту неувязку, Ньютон вводит понятие центра тяжести (точнее, инерции Солнечной системы), который всегда находится в состоянии покоя или равномерного прямолинейного движения. Именно относительно этого гипотетического центра и возникают абсолютные пространство и время.
Итак, абсолютность времени и пространства в свете законов Ньютона остаются неизменными, однако классическая физика погружается во все более и более глубокий кризис, который можно было бы преодолеть с появлением совершенно новой и не связанной «обязательствами» с традиционными представлениями об устройстве мира теории.
Рубеж веков часто становится временем различных переворотов, в т. ч. и научных. Революционным для физики, а значит, и для всех наук, занимающихся изучением нашего мира, стал 1905 г. В это время мало кому известный эксперт федерального Бюро патентов, преподаватель физики по специальности Альберт Эйнштейн выпускает статью в журнале «Annalen der Physik» под названием «К электродинамике движущихся тел». Следом появляется вторая статья «Зависит ли инерция тела от содержащейся в нем энергии?». Два этих труда и станут в последующем основой теории относительности.
Что же нового и революционного несла работа Эйнштейна? Во-первых, это было совершенно новое видение природы света. В XIX в. сложилось представление о свете как о волновом движении светового эфира — некой упругой среды. Новые данные, получаемые в сфере оптической физики, невозможно было трактовать с позиций волновой природы светового эфира, поэтому было принято рассматривать это явление природы как электромагнитное силовое поле, описываемое с помощью набора математических уравнений, выведенных Дж. Максвеллом.
С точки зрения концепции Ньютона об абсолютном пространстве и времени, световой эфир должен покоиться, а «пролетающие» сквозь него галактики и наша планета должны вызывать «эфирный ветер» или изменение прямолинейного распространения солнечных лучей, регистрируемые экспериментально оптическими приборами. Однако многочисленные исследования в этой области не показали абсолютно никаких следов «эфирного ветра».
Эксперименты опровергли существование светового эфира. Появилась потребность дать совершенно иную трактовку природы света, что и сделал Эйнштейн, заменив эфир электромагнитным полем. Отправной точкой для его исследований было рассмотрение скорости распространения света — максимальной из возможных скоростей передачи какого-либо сигнала и одновременно конечной.
Исходя из этого утверждения, можно прийти к отрицанию возможности одновременного происхождения событий в удаленных друг от друга точках (при наблюдении этих событий неким сторонним наблюдателем). Значит, Эйнштейн пришел к пониманию относительности одновременности событий, а затем и к относительности самого времени — невозможность абсолютной одновременности влечет за собой и невозможность существования абсолютного времени во всех системах отсчета.
Поскольку время и пространство — тесно связанные друг с другом величины, то с отказом от абсолютности времени приходит отказ от абсолютности пространства. Таким образом, в «Специальном принципе относительности», сформулированном Эйнштейном в 1905 г., утверждается, что в любых системах отсчета, движущихся относительно друг друга прямолинейно и равномерно, действуют одни и те же физические законы, при переходе же из одной системы отсчета в другую пространственно-временные координаты преобразуются. Впервые о времени и пространстве было сказано как о координатах, способных различным образом изменяться.
Двумя знаменитыми парадоксами специальной теории относительности стали уменьшение размеров тела и замедление хода часов при достижении телом скорости, приближающейся к скорости света. Следовательно, масса тела, представлявшаяся в классической физике величиной постоянной, будет нарастать при существенном увеличении скорости тела, что и было экспериментально определено для элементарных частиц, в частности электрона, с появлением установок, способных разогнать частицы до скоростей, близких к скорости света.
Еще одним следствием специальной теории относительности является важнейший закон не только из области физических знаний, но и мировоззрения вообще. Это закон об эквивалентности массы и энергии, общеизвестное E=mc2. Получается, что рассматриваемый Эйнштейном свет является переносчиком не только энергии, но и массы, а масса является мерой энергии, переносимой телом. Экспериментальных данных, подтверждающих верность сделанных Эйнштейном выводов, было достаточно, например, отечественный физик-экспериментатор П. Н. Лебедев обнаружил давление света на твердые тела и др.
Итак, специальная теория относительности коренным образом изменила традиционные представления о времени и пространстве, придав им значение меняющихся координат четырехмерного пространства. В этой работе Эйнштейн обосновывает относительность только равномерного движения, но ведь этот вид движения является далеко не единственным и даже далеко не превалирующим. Как же обстоит дело с другими видами движения? По логике вещей, если относительно равномерное движение, относительны и все другие виды движений.
Сам Эйнштейн говорил, что физические законы должны быть настолько универсальны, чтобы их можно было применять для систем отсчета, движущихся произвольным образом. Именно поэтому была разработана общая теория относительности, углубленно рассмотревшая явление всемирного тяготения. Действительно, ни Галилей, ни Ньютон, описывавшие тяготение, не смогли описать природу самого этого явления. Впервые в рамках теории относительности Эйнштейну удалось проникнуть в тайны притяжения тел, обладающих массой.
Эйнштейн проанализировал идею, выдвинутую в свое время Махом, о том, что частица обладает инерцией только при взаимодействии с остальным веществом Вселенной, причем это взаимодействие, судя по всему, и является гравитационным по своей сути. Ускорение, придаваемое разным по инерционности частицам Вселенной, является следствием воздействия на частицу некоего поля тяготения, являвшегося по своей природе результатом взаимодействия относительного движения нескольких тел. Таким образом, ускорение также является относительным.
Коренным отличием специальной теории относительности от общей является то, что в первой обосновывалась относительность пространства-времени с прямыми световыми лучами, тогда как во второй пространственно-временное измерение считалось изначально искривленным, что было теоретически блестяще доказано выдающимися математиками Лобачевским и Риманом (именно общая теория относительности «включила в жизнь» теоретические разработки неевклидовой геометрии).
Итак, Эйнштейн разрабатывает математический аппарат своей теории, с помощью которого высчитывает кривизну времени и пространства, создаваемого Солнцем в Солнечной системе. Важным и неопровержимо доказывающим правильность новой теории являются следующие данные: уже давно было известно, что в силу влияния взаимного тяготения планеты движутся по эллиптическим орбитам, которые к тому же медленно поворачиваются относительно своей оси, это явление получило название прецессии перигелия.
В случае планеты Меркурий экспериментальные данные показывали, что поворот эллиптической орбиты происходит на 43 угловые секунды в столетие быстрее, чем это должно было бы быть согласно теоретическим выводам законов Ньютона. Расчеты же с позиций общей теории относительности полностью теоретически подтверждали данные измерений, определяя, помимо величины отклонения, и направление поворота эллипса.
Вдохновленный успехом, Эйнштейн вычисляет угол отклонения световых лучей при прохождении вблизи Солнца под влиянием его поля гравитации. Теоретически это отклонение должно было составлять приблизительно 1/4000 углового диаметра Солнца при наблюдении с Земли. Во время полного солнечного затмения в 1919 г. группе астрономов во главе с голландцем Эддингтоном удалось сделать телескопические фотографии, по которым в последующем были определены положения звезд в тот момент, когда рядом на небосводе не было Солнца. Оказалось, что смещение световых лучей, проходящих в непосредственной близи от Солнца, полностью идентично вычисленному теоретически.
Прецессия перигелия Меркурия, просчитанная А. Эйнштейном
С этого момента общая теория относительности получила всемирное признание, ее называли не только выдающимся достижением человеческого гения, но и «… величайшим произведением искусства», поскольку стройность, красота всех ее положений и доказательств сочетались с простотой исходных принципов, создающих картину мира совершенной гармонии, в которой Эйнштейн был глубоко убежден.
А что же время и пространство? Именно с момента создания Эйнштейном теории относительности время потеряло статус незыблемого и непознаваемого, существующего вне человеческого представления о нем абсолюта, отныне это «всего лишь» одно из 4-х измерений, существующее только при наличии материи во Вселенной и прекращающее свое существование с исчезновением этой самой материи.
Да, время для некоего объекта способно замедляться с увеличением скорости движения, иными словами, для человека, «мчавшегося» в пространствах Вселенной и вернувшегося на Землю, времени пройдет гораздо меньше, нежели для остальных землян. Следствие, ставшее основополагающим для огромного количества фантастических романов и кинофильмов, — реальный и теоретически доказанный факт, ожидающий опытного подтверждения от человечества вот уже почти 90 лет.