Условия задачи

Условия задачи

Посвящаю эту книгу отцу — человеку, который изобрел, построил и испытал батискаф, а также матери и жене, своим мужеством и жертвенностью позволившим нам осуществить эту работу.

Море издавна влекло человека. Биологи усматривают в этом влечении инстинктивное желание познать тайну происхождения жизни. В самом деле, ведь наша кровь по составу схожа с морской водой, а утробное развитие повторяет эволюцию жизни на нашей планете. Первые живые клетки скорее всего зародились в океане. И кто знает, быть может, подводный вулкан, извергая пламя, высек в море искру жизни, а колоссальное давление глубин послужило катализатором великому процессу. Сможем ли мы когда-нибудь с уверенностью ответить на это? Человек стремится познать все, но до сих пор не ведает истоков зарождения жизни.[2]

Вслед за рыбаками, поэтами, философами, воинами, естествоиспытателями морем заинтересовались сейчас экономисты и демографы. Количество людей на планете превышает три миллиарда, но питается досыта меньше половины населения. Как сумеют прокормиться люди, могущие рассчитывать только на себя? Их судьбами озабочены политические деятели, теоретики, лабораторные исследователи, выпускники университетов. Если бы мировая экономика была организована на разумной основе, ресурсов Земли вполне хватило бы не только на всех живущих, но и на большее число людей. Однако экономика строится не на основе разумности и целесообразности, да и равновесие между числом населения и пищевыми ресурсами наступит только после того, как мы сумеем взять максимум от нашей планеты, если только атомная катастрофа или грандиозная эпидемия не обезлюдит ее. Не случайно столько ученых сегодня обращают свой взор к морю: нам надо научиться использовать его.

Есть и другие соображения. Море оказывает огромное влияние на атмосферу: масса воды — это своего рода гигантский термостат. Можно ли серьезно предсказывать погоду, не зная досконально правил, которым подчиняются морские течения, изменения температуры, циклоны?

Мы живем на суше, поэтому своей планете мы дали имя Земля. На самом деле ее следовало бы называть Морем. Больше двух третей поверхности заняты водой, и, если к нам явятся пришельцы из космоса, они ее так и назовут. Даже если срезать все горы и континенты и попытаться заполнить ими океан, он все равно сохранит среднюю глубину 2500 метров. Обилие воды в жидком состоянии делает нашу планету уникальной в солнечной системе: на Меркурии скорее всего нет воды — там слишком жарко; на Юпитере — слишком холодно; Луна слишком мала, любая молекула воды, попав на ее поверхность, улетучивается, поскольку лунное притяжение много меньше ее молекулярной скорости. Биологи говорят, что наличие воды на Земле еще более удивительно, чем присутствие жизни. Не хотелось бы забираться в такие дебри таинств матери-Природы, но возникает вопрос, откуда взялась жизнь, не менее логично спросить себя: откуда взялась вся эта вода? Здесь, как и на всякий кардинальный вопрос, наука может дать только частичный ответ.

В центре Земли находится ядро в виде жидкой кипящей массы, состоящей, по всей вероятности, из расплавленного железа и никеля. Ядро окружает базальтовая оболочка-мантия толщиной около 3 тысяч километров. А она в свою очередь покрыта неровной коркой «окалины» — материками. Похоже, что вода с течением времени заполнила пустоты между возвышающимися континентами — образовались океанские бассейны. Библейская «Книга Бытия» по крайней мере описывает дело именно таким образом.

Долгие века человек знал только поверхность моря. В его воображении не укладывалась мысль о том, что может существовать «нечто» в его пучине. Коль скоро природа сделала глубины невидимыми для глаз, то, наверное, хотела скрыть свои тайны… Потом стало ясно, что в океане водятся живые существа. Но рыбы плавали на небольшой глубине. Кто же тогда обитал в пучине? Должно быть, кровожадные чудища.

Когда по берегам возникли первобытные цивилизации, море продолжало оставаться одномерным. Мало-помалу течением рек к прибрежным селениям выносило стволы деревьев, из которых люди выдалбливали первые лодки. С этого момента море стало двухмерным. Таким ему суждено было оставаться тысячи и тысячи лет. В средние века — по крайней мере в Западной Европе — морская пучина еще внушала страх. Человек, правда, изобрел подобие скафандров, он даже создал ласты — прототип тех, что были вновь «открыты» много лет спустя. Но никто не отваживался спускаться в эту стихию зла и опасностей, где, по словам Александра Македонского,[3] «свирепые рыбины пожирают несчастных утопленников».

В XIX веке царило твердое убеждение, что на больших глубинах жизнь отсутствует. Шотландский биолог профессор Эдвард Форбс считал, что жизнь под большим давлением столь же немыслима, как в огне и безвоздушном пространстве. «Последние искорки жизни, — писал он в 1840 году, — угасают на пятисотметровой глубине». Даже Мэтью Фонтейн Мори, основоположник американской океанографии, автор первых научных трудов об океане, и тот разделял эту концепцию как «наиболее соответствующую Моисеевым заветам».

Экспедиция английского судна «Поркьюпайн» в 1869 году опрокинула эти воззрения. Уайвилл Томсон выловил множество живых существ на куда больших глубинах, чем предрекал Форбс. Тем не менее надо было еще доказать, что жизнь существует в больших океанских впадинах, на «адских» глубинах, как недавно предложил их называть копенгагенский профессор Антон Брюн.

В начале нашего столетия князь Альберт Монакский поднял с глубины 6 тысяч метров одну рыбу, несколько морских звезд и других обитателей.

Понадобилось еще полвека, прежде чем этот рекорд был побит. В 1951 году датская глубоководная экспедиция на «Галатее», совершив беспримерное океанографическое плавание вокруг света, извлекла со дна Филиппинского желоба, с десятикилометровой глубины, великолепный улов: двадцать пять морских анемон, семьдесят пять морских огурцов, пять двустворчатых моллюсков, одного ракообразного, полихету (многощетинкового червя)[4] и еще несколько существ. Множество беспозвоночных было найдено в других впадинах, особенно в желобе Сандра, где на глубине 7 тысяч метров «Галатея» обнаружила рыбу, которой целое десятилетие предстояло числиться самой глубоководной рыбой мира. Мы расскажем дальше, как «Триест» окончательно разрешил эту проблему: нам удалось увидеть своими глазами живую рыбу на глубине 10 900 метров на дне Марианской впадины. Таким образом, стало ясно, что даже самые неблагоприятные обстоятельства — давление, холод и тьма, вместе взятые, — не в силах преградить путь жизни.

У любого самого хрупкого организма внутреннее давление соответствует давлению окружающей среды. Однако в некоторых случаях оно задает загадки биохимикам: скажем, протоплазма яйца морского ежа[5] под абиссальным давлением свертывается. Какие мутации обеспечивают выживание на сверхглубинах?..

Точная глубина морского дна оставалась неведомой долгое время после того, как уже были вычислены расстояния от Земли до Луны, Солнца и остальных планет. Некий астроном — к счастью для него, имя успело забыться, — рассчитав приливные волны, пришел к выводу, что океанское дно лежит примерно на сорокакилометровой глубине. Еще в середине XIX века господствовало убеждение, что океан бездонен. Кстати сказать, среди жителей гор до сих пор есть немало людей, уверенных, что их маленькие озера «не имеют дна». И это несмотря на то, что с лодки им не раз случалось веслом зачерпывать ил! Сто лет назад получила распространение гипотеза о «соответствии» высоты гор глубинам океанов; это была чистой воды интуиция, основанная на некоем законе «постоянства» или «компенсации» природы. (Любопытно, что впоследствии этот закон «почти» подтвердился.)

Не меньшим заблуждением было и мнение о том, что морское дно представляет собой пустынную равнину типа Сахары или сибирской тундры. Как теперь стало известно, под гладью воды лежат горные хребты, пики, вулканы, долины, ущелья, не отличающиеся от своих собратьев на надводных континентах.

Нынешние методы промеров глубин несколько усовершенствовались со времени Магеллана, который, опустив в воду линь длиной в 200 саженей и не достигнув дна, решил, что находится в самом глубоком месте океана. Классические промеры с помощью каната с привязанным пушечным ядром долгое время давали удивительно путаные результаты; гидрографические бюро получили кучу уведомлений о том, что в разных местах достигнута глубина, превышающая 15 километров! Достаточно было течению или ветру отнести корабль в сторону, как длина линя существенно увеличивалась. Проще было просто измерять линь, не опуская его в воду! В конце концов Мори несколько укротил фантазию капитанов, установив свое «правило свинцового лота».

В годы между двумя мировыми войнами появился новый прибор — эхолот, сконструированный на основе простейшего принципа улавливания эха. Прибор посылает звуковой импульс в направлении морского дна со скоростью 1500 метров в секунду и регистрирует его отражение. Время засекается хронометром, а расстояние автоматически вычисляется в морских саженях или метрах. С помощью этого звукового «глаза» удалось вычертить довольно точный рельеф морского дна. Теперь за время, которое раньше уходило на один промер лотом, можно было сделать несколько тысяч зондирований. Постепенно на карту был нанесен рельеф дна Мирового океана. Более того, усовершенствованные эхолоты смогли дать ценные сведения о строении дна и толщине покрывающих его отложений. Достаточно было взглянуть на движущуюся ленту, чтобы составить представление о характере рельефа. Наконец, акустический метод позволил так же точно установить местонахождение сверхглубоких впадин.

Эти гигантские желоба лежат не в центре океанских бассейнов, как можно было ожидать, а опоясывают континенты. В Тихом океане крупнейшие впадины тянутся с небольшими интервалами с севера на юг от Камчатки, вдоль Курильских островов до Японии. На широте Японии они расходятся двумя ветвями; западная идет вдоль Тайваня, Лусона и Минданао (Филиппинский желоб), восточная же спускается к югу в район Марианских островов (глубина Челленджера) и встречается с первой ветвью возле Новой Гвинеи. В Атлантическом океане самый глубокий желоб (свыше 9 километров) расположен у Антильских островов, севернее Пуэрто-Рико.

Районы эти очень неспокойны. Здесь часты извержения подводных вулканов и землетрясения. По всей видимости, часть желобов появилась сравнительно недавно и процесс образования продолжается. Некоторые геологи считают, что желоба появились при боковом сжатии в результате движения «блоков» морского дна. Сходный процесс привел к образованию на суше Альп и большинства других горных цепей. Однако многие геофизики полагают, что гигантские желоба на дне моря — результат растяжения земной коры.

Глубочайшее место в Филиппинском желобе обнаружило в самом начале первой мировой войны немецкое судно «Эмден», тезка знаменитого в свое время корсарского корвета. Во все школьные учебники этот желоб вошел как самая глубокая впадина на Земле. Во время второй мировой войны она была «углублена» до 10 200 метров экипажем американского транспорта «Кейп Джонсон». К сожалению, промеры были прерваны атакой японских самолетов-торпедоносцев. Однако другое американское океанографическое судно — «Хорайзн», принадлежащее Институту Скриппса, развенчало Филиппинскую впадину, открыв в желобе Тонга место глубиной в 10 600 метров. И наконец, в 1951 году английский корабль «Челленджер-2» зафиксировал в Марианском желобе, в 400 километрах юго-западнее острова Гуам, глубину 10 800 метров. Цифра была с небольшими поправками подтверждена затем советскими [6] и американскими океанографами. Таким образом, котловине Челленджер принадлежит пальма первенства.

Параллельно с промерами все более ощущалась насущная необходимость узнать побольше об этих глубинах. Ясно было, что нельзя двигаться дальше, не взглянув собственными глазами на морское дно, его флору и фауну. Только как это сделать?

На рубеже нашего столетия, в 1905 году, Огюст Пикар изобрел аппарат, названный батискафом. Он состоял из герметической гондолы и поплавка, наполненного легким углеводородом. В то время отец был еще только студентом Высшей политехнической школы в Цюрихе и осуществить погружение ему не удалось. В дальнейшем Пикар увлекся исследованиями радиоактивности, тогда совсем молодой отрасли науки. Для «ловли» космического излучения он в 1931 и 1932 годах поднимался на своем воздушном шаре в стратосферу. В эти же годы два американских пионера подводных погружений — Биб и Бартон построили подобие батисферы и, преодолев тысячу опасностей, отважились погрузиться на глубину 904 метра. Наградой им явились ценнейшие данные. С первых же шагов, пишет в своей книге «На глубину 900 метров» Уильям Биб, океанавты столкнулись с множеством технических трудностей: лопались иллюминаторы (к счастью, во время пробных погружений пустой батисферы), вода проникала сквозь дверную изоляцию, электрический кабель вдавливало внутрь кабины, и он, словно гигантский осьминог, опутывал наблюдателей. Но все это удалось преодолеть, и факт остается фактом: Биб и Бартон первыми достигли глубин, куда никогда не проникает солнечный свет, и добыли уйму сведений.

В штурме океанских глубин участвовали и другие энтузиасты. Еще в 1866 году два французских инженера — Рукайроль и Денайруз создали оригинальный тип автономного скафандра, позволявшего находиться в воде до тех пор, пока хватало воздуха в резервуаре. Аппарат превосходно зарекомендовал себя и в дальнейшем был усовершенствован другими конструкторами, в частности капитаном Леприером. С развитием техники в акваланге появились новые аксессуары и приспособления, однако принцип оставался прежним на протяжении многих лет. Аппарат получил признание, и публика сейчас пользуется им, пожалуй, так же хорошо, как велосипедом.

Акваланг позволяет достичь глубины 40–80 метров в зависимости от тренированности пловца и степени допустимого риска в каждом отдельном случае. Не так давно швейцарский математик Ганс Келлер из Винтертура разработал систему принципиально нового акваланга, позволившего самому автору выдержать во время испытаний давление, соответствующее глубине 300 метров! Этот аппарат замечателен тем, что позволяет избежать долгой декомпрессии. Ганс Келлер еще не сказал своего последнего слова и покамест не раскрыл своего секрета. В момент, когда пишутся эти строки, появились сообщения о том, что он намерен погрузиться глубже 300 метров.[7] От всей души пожелаем ему удачи, хотя я знаю, что он полагается не на удачу, а на строгие расчеты и разработанную методику.

Человек пока что не научился добывать кислород непосредственно из воды подобно существам, обитавшим в море в незапамятные времена; у человека есть только один путь в глубины океана — водонепроницаемая кабина.

Результаты Биба разом обнадеживали и разочаровывали. Обнадеживали тем, что приоткрыли окно в морскую пучину; а разочаровывали потому, что подводный дирижабль мог в любой момент оказаться опасной ловушкой. Кроме того, он не позволял садиться на дно, да и техника управления никак не могла удовлетворить поставленным задачам. Было очевидно, что в будущем придется изыскивать иные варианты.

Никто из моряков не отнесся тогда всерьез к этой проблеме. Дело в том, что конструктор-профессионал считал вполне достаточным, если его подводная лодка могла спуститься на 10 метров глубже подлодки потенциального противника. Двигаясь в этом направлении, флотские специалисты выигрывали каждый год по нескольку метров, но принцип соревнования не менялся.

И вот швейцарский инженер-физик, к тому же в прошлом аэронавт, предлагает совершенно иное решение, найденное, как мы уже сказали, в начале века, но тем не менее остающееся и теперь пока единственным путем к сверхглубинам. Профессор Пикар переделал свой стратосферный воздушный шар в подводный дирижабль: легкая алюминиевая гондола превратилась в тяжелую стальную кабину; гигантский шар, вмещавший 14 тысяч кубических метров углеводорода, превратился в маленький поплавок объемом всего в несколько десятков кубических метров, наполненный бензином; канатный гайдроп был заменен стальной цепью; иллюминаторы во много раз утолщены; система же регенерации воздуха оставлена прежней. Так родился батискаф.

Поиск начался в ноябре 1848 года, когда первый батискаф, названный ФНРС-2, совершил свое первое погружение на 1380 метров.