Батискафы и подводные лодки будущего

We use cookies. Read the Privacy and Cookie Policy

Батискафы и подводные лодки будущего

За кромкой пляжей континенты незаметно соскальзывают в море. Скрывшись под водой, берег отлого тянется иногда на десятки и даже на сотни километров. Континентальные шельфы вполне можно назвать «морским огородом»: обилие солнца позволяет здесь произрастать водорослям, кормиться рыбе. Затем склон становится круче и устремляется в бездну глубиной в четыре, пять и даже шесть километров. Море меняется, исчезают привлекательные пейзажи, радовавшие глаз у поверхности; начинается абиссальное царство. Это и есть владения батискафа.

«Триест» и ФНРС явились только прототипами: батискаф был задуман как универсальный аппарат для достижения любых глубин, позволяющий взять на борт несколько тонн научного снаряжения. Но ему уже пошел десятый год — и это в эпоху, когда боевые самолеты устаревают за один-два года! Во времена, когда строился «Триест», нам приходилось затягивать пояс и экономить каждый сантим своего тощего бюджета. В принципе при всем желании мы не могли воспользоваться лучшими достижениями техники тех дней. Представьте себе, какое превосходное судно можно построить за половину или даже одну четверть стоимости современного бомбардировщика! Когда изготовление таких аппаратов будет поставлено на промышленные рельсы, уже не два-три, а десятки, сотни батискафов смогут опускаться на морское дно.

Без батискафов нельзя обойтись при исследовании полутора миллиардов кубических километров объема морей и океанов. Один Тихий океан занимает площадь в девять раз больше, чем видимая часть Луны, и, хотя это самый глубокий океан, он представляется мне тоненькой пленкой — его ширина в три тысячи раз превосходит глубину!

Но сколько несметных богатств хранит эта пленка! Я думаю сейчас не о золотых слитках, лежащих в трюмах легендарных испанских галионов рядом с прикованными узниками, но о залежах марганца, меди, кобальта, никеля, фосфатов и других ископаемых. Фотосъемки возле берегов Южной Америки показали наличие марганцевых конкреций на площади, превосходящей в двадцать раз Францию. На морском дне имеется также нефть, количество которой трудно даже подсчитать. Уже сейчас нефть качают с разной глубины на континентальном шельфе и, как свидетельствует осуществление проекта «Мохол», техника бурения глубинных скважин в открытом море стремительно совершенствуется.

Однако прежде всего нужно обеспечить доступ на дно ученому-естествоиспытателю. Чисто лабораторная работа и взятие проб с поверхности больше не могут удовлетворить растущих потребностей. Мировая океанография достигла больших успехов с помощью классических средств — забрасывания сетей, прочесывания дна, запуска бутылок по течениям. Но чтобы как следует понять и уяснить среду, которую он изучает, человеку нужно самому послушать, пощупать, посмотреть. Наверное, во всех языках выражение «я вижу» означает также «я понимаю»…

Итак, чтобы понять море, океанограф должен попасть в него (достаточно посмотреть на очередь желающих погрузиться на батискафе)! Биолог должен посмотреть на рыб в естественной среде обитания, геолог — взять пробы грунта, акустик — проверить загадочное поведение звуковых импульсов, в частности в глубоководных звукорассеивающих слоях. Биолога, забрасывающего сеть с поверхности, справедливо сравнивают с «марсианином»: словно инопланетный житель сачком для бабочек водит над облаками и по результатам своего улова делает выводы о населении Земли!

В 1912 году норвежский океанограф профессор Бьорн Хелланд-Хансен опустил аппарат с фотографическими пластинами на 1 час 20 минут в море на глубину 1000 метров. Проявив пластинки, он обнаружил на них полосы света, из чего заключил, что солнечный свет доходит до этой глубины. Его теория имела хождение в течение двадцати лет.

Теперь ясно, что, если бы он производил опыт не с помощью каната, а на батискафе, он сразу бы понял, что на пластинках были отпечатки фосфоресцирующего зоопланктона.

Проблема подводной навигации, равным образом как и космических полетов, заключается в том, чтобы обеспечить выживание человека во враждебной среде. В космосе это — низкое давление, отсутствие кислорода, резчайшие скачки температур. В глубоководных впадинах это — высокое давление и сама водная среда. В обоих случаях необходима герметичная кабина и система регенерации воздуха. Стратосферный шар с гондолой, созданной моим отцом, после первых же полетов 1931–1932 годов дал в руки ученым надежную систему. Батискаф, строительство которого началось вскоре после упомянутых полетов, основан на том же принципе герметичности гондолы. Другой системы для морских погружений пока нет и вряд ли предвидится.

Я не буду останавливаться на разборе достоинств водолазных костюмов и аквалангов. Совершенно очевидно, что они, не защищая человека от давления окружающей среды, лимитируют тем самым глубину погружений. Как известно, ныряльщик может без ущерба опускаться в море не глубже 40–50 метров. Аквалангист, используя особую смесь газов, способен опуститься в отдельных случаях до 100 метров. Швейцарский математик Ганс Келлер, о котором мы упоминали, кажется, нашел способ отодвинуть границу еще ниже и избежать декомпрессии…

До какой глубины может опускаться водолаз? Сейчас на это вряд ли кто сможет ответить. Не будем забывать, что с «Триеста» мы наблюдали живую рыбу на глубине 11 тысяч метров, где давление равно 1156 килограммам на квадратный сантиметр.

При современном уровне знаний и развития техники мыслимо пока одно решение: батинавты должны находиться в герметической кабине, выдерживающей давление абиссальных глубин. Важно начать строительство аппаратов целевого назначения, предназначенных для конкретных глубин. Море можно разделить на зоны глубин, подобно тому как атмосфера разделена на зоны высоты. Спортивный «пайпер» никогда не поднимется на 11 тысяч метров в высоту, а реактивный самолет не заставляют летать на бреющем полете. Не следует считать, что подводный аппарат, способный опуститься на 11 тысяч метров, будет рационален при работах на глубине 5 тысяч метров. Это было оправдано при постройке первых батискафов, скажем того же «Триеста», который должен был разом охватить все морские слои. Настало время делать специальные батискафы; едва ли не на каждый километр глубины можно иметь особый тип подводного аппарата. ФНРС-3, например, настолько перегружен аппаратурой, что не способен в данное время опускаться ниже 2 тысяч метров. Это тот случай, когда диспропорция не оправдана.

Резюмируя, можно сказать следующее: чем глубже предстоит опускаться гондоле, тем она будет тяжелее и неповоротливее. Выход из положения надо искать в атомном двигателе.

Первопроходец Биб в своей книге «Глубина полмили» предсказывал день, когда море заполнят батисферы. Одни будут подниматься, другие опускаться, словно «мобили»[41] в американских универмагах или марионетки на ниточках. На самом же деле единственная батисфера, построенная в Америке после Биба, опустилась один-единственный раз на 1360 метров возле калифорнийского берега. Ее изобретатель Бартон назвал свой аппарат «бентоскопом».

Биб проложил дорогу в море, и океанографы обязаны ему многим. Но средство, которое он предложил для подводных исследований, оказалось бесперспективным: на смену батисфере пришел автономный аппарат батискаф. Батисферу подвешивали на тросе, что в общем-то очень опасно. Во-первых, привязанная гондола, как правило, сильно раскачивается; если же к этому добавляется качка на поверхности, которую не может не испытывать корабль-матка, трос рискует в любой момент оборваться. Такой случай нельзя предусмотреть никакими предварительными выкладками, причем опасность, естественно, возрастает с глубиной. Было предложено использовать вместо стального троса нейлоновый, велись также испытания с полиэтиленовым и полипропиленовым тросами — они легче воды. Пока опускали только приборы, но сразу же обнаружили на тросах следы укусов рыб. Кто же может поручиться, что акула одним щелчком своей челюсти, усаженной острыми зубами, не отправит навечно на дно тех, кто посмел забраться в ее владения!

Есть и другая опасность: когда гондола ляжет на дно, длинный трос может запутаться между камнями и подводными скалами. Такое уже случилось однажды в Калифорнии с бентографом, близким родственником бентоскопа Бартона. К счастью, он был предназначен только для автоматической подводной съемки. Когда судно «Валеро», к которому был привязан бентограф, захотело поднять своего подопечного на борт, трос сопротивлялся так, словно корабль встал на якорь! «Валеро» понапрасну маневрировал несколько часов. В конце концов трос оборвался, и аппарат со всем своим содержанием остался на дне, где и покоится до сих пор. В годы между первой и второй мировыми войнами на одном из озер в Италии аналогичное происшествие стоило наблюдателю жизни…

Во избежание подобных случаев для небольших глубин теперь делают легкие гондолы, легче воды: их опускают с помощью прицепленного груза. Среди них следует назвать водолазные колоколы конструкции Галеации, где и груз, и трос можно сбросить при возникновении опасности. Множество этих замечательных итальянских аппаратов вот уже несколько лет с успехом действуют во Франции и Италии.

С точки зрения безопасности водолазные колоколы представляли шаг вперед по сравнению с батисферой. Но они предназначены для операций на небольших глубинах, от силы несколько сот метров; к тому же они буквально прикованы к поверхности. Колокол напоминает шарик на ниточке в сравнении с дирижаблем или подводным самолетом. Японские конструкторы предложили свой вариант колокола, дающий большую автономию. В их системе «Куросио» к гондоле добавлен гребной винт — его приводит в действие электромотор, получающий питание по кабелю от корабля-матки. Такая подводная лодка на привязи способна передвигаться в пределах досягаемого кабеля.

Но для свободного плавания на сверхглубинах нужен совершенно иной аппарат. Даже обычная подводная лодка — своего рода пленница под надзором: проведя примерно сутки под водой, она вынуждена подняться на поверхность и запустить дизели для зарядки батарей. К тому же ее предел 100–150 метров глубины.

Атомные лодки получили куда большую свободу, но и они лимитированы относительно небольшой глубиной. Атомный двигатель легче дизельного. Сэкономленный таким образом вес пошел на увеличение толщины корпуса. Предельная глубина для атомных подводных лодок неизвестна, но можно предполагать, что она составляет примерно 300 метров. То есть едва ли тридцать шестая часть больших океанских впадин! Разумеется, если с лодки снять торпеды, пушки, мины, боеприпасы и прочий бесполезный, с точки зрения океанографа, груз, предел глубины можно будет легко удвоить, усилив за счет сэкономленного веса корпус.

ГОНДОЛА БАТИСКАФА «ТРИЕСТ» В РАЗРЕЗЕ.

1. Пульт управления прожекторов.

2. Пульт управления балластом и другим оборудованием.

3. Пульт управления двигателями.

4. Разное оборудование.

5. Запасная щелочь.

6. Бортовой хронометр.

7. Прибор, регистрирующий количество израсходованного балласта.

8. Манометры.

9. Контроль уровня углекислоты внутри гондолы.

10. Устойчивая к высокому давлению труба.

11. Ввод электрических кабелей.

12. Телефон.

13. Кинокамера.

14. Фотоаппараты.

15. Различные океанографические приборы.

16. Многоканальный магнитофон.

17. Указатель подводных течений.

18. Электрический термометр.

19. Маятник для определения отклонения гондолы.

20. Аккумуляторные батареи.

21. Баллоны со сжатым воздухом.

22. Кислород для дыхания.

23. Щелочь.

24. Распределительный щит.

25. Беспроволочный акустический телефон.

26. Ультразвуковой эхолот.

27. Океанографические приборы.

28. Тахометр.

29. Внутреннее освещение.

30. Приборный стеллаж гондолы.

31. Сидение.

32. Пол гондолы.

33. Оболочка сферы.

34. Входной люк.

35. Иллюминаторы.

Мы уже говорили о том, что ряд стран объявил о своем намерении строить новые батискафы. В Соединенных Штатах, Советском Союзе и Франции разрабатываются или уже строятся аппараты, напоминающие «Триест». Все они предназначены для больших глубин. Попробуем представить себе, как должен выглядеть идеальный батискаф будущего.

Прежде всего гондола. До сего времени все три гондолы, успешно прошедшие испытания в различных океанах мира, были построены по чертежам профессора Пикара и изготовлены из стали: первая — отлита, вторая и третья — выкованы. Но существует металл куда более легкий и прочный, чем сталь, это — титан. Его удельный вес в воде вполовину меньше, чем у стали, а прочностью он не уступает самым современным сплавам, в частности тем, что пошли на крупповскую гондолу. Аппарат из титана, будучи легче воды, смог бы достичь дна Марианского желоба. На первый взгляд может показаться, что коэффициент безопасности у него невелик. Кроме того, на нем нельзя было бы разместить необходимый полезный груз. Но достаточно увеличить объем гондолы, чтобы взять практически любой груз. Правда, в таком случае, чтобы сохранить нормальные пропорции, поплавок пришлось бы уменьшить.

Каким должен быть поплавок? Сжиженный под давлением газ был бы сложным и ненадежным «заполнителем»; остаются, таким образом, твердые и жидкие тела. Из жидкостей лучше всех подходит бензин. Единственное, пожалуй, неудобство в том, что он обладает большей сжимаемостью, чем вода, а это влечет уменьшение вертикальной остойчивости и значительный расход балласта. Во всем остальном бензин хорош, он легок и дешев, а то, что он не смешивается с водой, делает его особенно пригодным. В принципе можно даже обойтись одним бензином без балласта. Предположим, что в поплавке уменьшается 100 кубических метров бензина. Чтобы аппарат опустился, скажем на 3000 метров, ему необходимо отяжелеть на три тонны. Для этого нужно построить батискаф, имеющий на поверхности положительную плавучесть в три тонны. Погружаться он должен не статически, как инертный шар, а динамически, как подводная лодка, с помощью винтов и горизонтальных рулей. Достигнув глубины 3000 метров, аппарат окажется практически в равновесии, и пилот сможет удерживать его на дне одним гайдропом. Благодаря расширению бензина аппарат самопроизвольно поднимется на поверхность. Если обычный батискаф, закончив погружение, должен заново загрузиться балластом, а иногда и пополнить количество маневренного бензина, батискаф новой конструкции сможет совершить подряд несколько погружений, а это большое преимущество. Подобный тип батискафа более дешев, правда он требует мощных моторов. Отметим, что условия равновесия должны быть тщательно рассчитаны заранее.

Есть еще один выгодный заполнитель для поплавка: это концентрированный раствор аммиака, причем концентрацию можно подобрать таким образом, что сжимаемость жидкости будет такая же, как у воды. Аппарат, использующий эту смесь, будет сохранять равновесие и остойчивость практически на любой глубине. У аммиака есть одно неудобство — он смешивается с водой. Раствор поэтому придется держать в непроницаемой эластичной цистерне, чтобы полностью исключить контакт с морской водой. Такую систему, кстати сказать, намерена испытывать в скором будущем одна из американских лабораторий, разрабатывающая новые типы батискафов.

Из твердых тел легче воды, могущими быть использованными в поплавке, назовем парафин и металлический литий. Оба этих вещества испытывал в свое время, много лет назад, мой отец. И оба отверг. Первый — потому что его удельный вес ненамного легче воды, второй — потому что он был немыслимо дорог. Но теперь атомная индустрия в состоянии производить литий, цены на него существенно понизились, и любая фирма или правительственная организация способны приобрести потребное количество. Удельный вес лития — 0,53 (из обычных твердых тел это самое легкое) и более низкая по сравнению с водой сжимаемость делают его особенно перспективным для батискафов. К сожалению, литий вступает в реакцию с водой.

Что касается атомной энергии, то ее можно использовать в батискафах с тем же успехом, что и на подводных лодках. Правда, батискаф долго еще будет удовлетворяться двигателями мощностью в несколько десятков, максимум несколько сот киловатт, поэтому нет необходимости строить для него атомные реакторы мощностью в десятки тысяч лошадиных сил, как ка «Наутилусе» или «Скейте».[42] Вполне достаточно использовать простейшую конструкцию, своего рода атомную батарею.

Итак, наш батискаф принимает законченные формы: титановая гондола, втянутая внутрь передней части поплавка, наполненного литием; на корме — атомный реактор и главный двигатель. Вся конструкция имеет обтекаемую форму. В нынешних батискафах гондола отстоит от поплавка, поскольку строительство отдельных частей обходилось дешевле. Да мы и не стремились к тому, чтобы аппарат быстро передвигался по дну.

Разумеется, подобный идеальный батискаф обойдется дорого. Но цены на титан и литий постепенно становятся доступными. При всей дороговизне такой аппарат будет стоить дешевле истребителя или любого другого современного носителя смерти.

Если представить себе, что батискаф способен плыть в любом месте океана, на любой глубине, с хорошей скоростью и находиться под водой любое потребное время, можно понять, с каким нетерпением мы ждем появления этого жюльверновского «Наутилуса»…

Многие, в том числе мой отец, думали о создании системы, имитирующей плавание дельфина, наделенного природой поразительными особенностями. Сейчас в Соединенных Штатах ведутся интенсивные поиски в этом направлении, в частности разрабатывается форма, предложенная Дмитрием Ребиковым.[43] В случае удачи в воде можно будет передвигаться с фантастической скоростью, расходуя небольшую энергию. Аппараты станут служить тогда не только для наблюдений за жизнью дна, но и для путешествий на громадные расстояния.

Глубоководный корабль с плавучим корпусом из титана будет иметь значительное преимущество по сравнению с батискафом — исчезнет необходимость в поплавке. Правда, батискафы нагружены обширной научной аппаратурой, так что до поры до времени поплавок необходим для исследования глубин, превышающих 6 тысяч метров. Зато для работы на глубинах до 4 километров вполне достаточно иметь автономную гондолу из титана, стали и даже алюминия. Чем меньше глубина, тем выгоднее использовать легкие металлы.

Желая продемонстрировать возможности алюминия при строительстве подводных лодок, американская фирма «Рейнолдс алюминиум энд металс компани» изготовила опытный экземпляр судна «Алюминаут». Цилиндрический корпус имеет стенки 15 сантиметров толщиной, 10 метров длиной и диаметр в 2 метра 10 сантиметров. Корпус этой миниатюрной подводной лодки обладает положительной плавучестью, так что дополнительный поплавок кораблю не нужен. Лодку вполне можно использовать на глубинах до 4 тысяч метров, таким образом, этому кораблю доступны шестьдесят пять процентов Мирового океана. В отличие от батискафа, у которого он заимствовал систему балласта, иллюминаторы и кое-какие аксессуары, «Алюминаут» сохраняет вертикальную остойчивость: он может парить в воде наподобие воздушного шара. Моторы позволяют развить ход до 4 узлов, а батареи — пройти за один раз больше 100 километров.

В настоящее время со всех сторон сыплются предложения, проекты и даже новые опытные образцы подводных судов. Океанографы-профессионалы и любители, инженеры и финансисты, гражданские и военные лица проявляют громадный интерес к морю. Все хотят осваивать океан. В одних Соединенных Штатах и Западной Европе разрабатывается тьма проектов.

Упомянем «ныряющее блюдце», построенное во Франции инженером Жаном Молларом по заказу капитана Жака-Ива Кусто. Этот аппарат предназначен для наблюдений дна на глубине 300 метров. Кабина сделана из прочной стали; вес снаряжения, оперативного и запасного балласта, а также двух пассажиров придает судну почти нейтральную плавучесть. «Блюдце» приводится в движение не гребными винтами, а гидрореактивными двигателями, как на американском корабле «Уитек». Чтобы уменьшить сопротивление и придать своему детищу ультрасовременный вид так называемых летающих тарелочек, конструктор сделал кабину действительно в форме блюдца. Но эстетические преимущества обернулись серьезными неудобствами: сжимаемость подобной формы очень велика, а это рискует нарушить статическое равновесие аппарата. У капитана Кусто вышло немало хлопот с этим блюдцем. Пришлось потратить много времени на испытания, прежде чем были получены удовлетворительные результаты. Одна или две модели были потеряны; на борту возник пожар — любители злословия могли вдоволь потешиться! Но мы знали, что у Кусто великолепные инженеры, большие финансовые возможности, и рано или поздно ныряющее блюдце будет доведено до совершенства. Аппарат позволит производить съемки на небольших глубинах, а в этом, как известно, сотрудники группы Ж.-И. Кусто блестяще специализировались.

В 1959 году невдалеке от того места, где стоял в сухом доке «Триест», мы увидели странный аппарат, напоминавший подводный танк. Его испытывали американцы, сотрудники Лаборатории электроники и ученые Института Скриппса. Он назывался ДПМ — «дистанционный подводный манипулятор». Смонтированный на гусеничном ходу, оснащенный манипуляторами (как явствует из его названия), подводной телекамерой и мощными прожекторами, ДПМ действовал как робот, причем команды передавались ему с берега по электрическому кабелю. Оператор мог заставить ДПМ ползти вперед, назад, поворачиваться во все стороны. Камера позволяла видеть дно. Кабель имел около восьми километров длины и автоматически сматывался на барабан внутри ДПМ. Гусеницы, по мысли создателей, должны были позволить ему преодолевать препятствия высотой в 1 фут. ДПМ способен опускаться до глубины 6 тысяч метров, и большинство рабочих органов аппарата имели соответствующую конструкцию.

Такой аппарат приобретает особую ценность, если работает в паре с батискафом. Как известно, подводные телекамеры сплошь и рядом дают нечеткое изображение. Мы давно уже планировали использовать такого рода мини-танк при условии, что им можно будет руководить из гондолы «Триеста». Но к сожалению, во время испытаний танк едва не потеряли, поскольку он застревал на дне. Морское дно покрыто слоем осадков, и в них тонули гусеницы ДПМ. Приходилось пускать его на скальном дне, а там столько выступов и щелей, что танк то и дело останавливался. Видимо, было бы выгоднее построить более легкий аппарат, способный плавать с помощью гребных винтов. Ведь гусеницы, ко всему прочему, при каждом повороте поднимают облака ила. Конструкторы ДПМ уже подумывают над созданием своего рода подводного вертолета, получающего команды с берега либо из гондолы батискафа. Его можно использовать, к примеру, для работ в подводных зонах, имеющих по тем или иным причинам сильную радиацию.

Идею подводного вертолета предложил мой отец еще в 1954 году. Речь шла об аппарате, работающем в «промежуточной стадии», то есть ниже глубин, которых может достичь аквалангист (300 метров, как планировал Ганс Келлер), но выше тех, где выгодно использовать тяжелый батискаф с поплавком. Профессор Пикар предложил сделать гондолу легче воды; причем она должна оставаться чуть легче воды даже после погрузки технического снаряжения и аппаратуры. Таким образом, отпадает надобность в поплавке — вертолет смог бы опускаться с помощью гребных винтов, приводимых в действие электромоторами. Преимущество данной системы — в ее полной надежности: если по каким-либо причинам двигатели выйдут из строя, аппарат автоматически всплывет на поверхность.

В одном из проектов предлагалось построить гондолу целиком из плексигласа; это обеспечило бы круговой обзор. Человек очутился бы внутри маленького пузыря, способного подниматься, опускаться, плыть по течению… Океанограф смог бы «включить» в море все свои чувства, как наш предок, миллиарды лет назад живший в воде.

Такой аппарат получил название «мезоскафа», то есть «корабля средних глубин».

Медленно, ощупью человек приспособился к суше.[44] Выйдя из крохотной живой клетки, обитавшей в море, он достиг земли и обжил на ней все широты. С точки зрения эволюции это громадный успех. Но впереди его ждет еще больший успех, когда он завершит свой удивительный цикл и вернется к истокам, к глубинам моря, тоску по которому сохранил навсегда.