§ 15. Менделизм

Приведем опять определение менделизма из «Краткого философского словаря» (4-е изд., 1954, с. 342):

«Менделизм — ложное, метафизическое учение о наследственности, созданное австрийским монахом Грегором Менделем в 60-х годах прошлого столетия и принятое современной буржуазной наукой о наследственности. Согласно этой теории, существуют законы наследственности, одинаковые для всех организмов от гороха до человека. Наследственные свойства (факторы) не зависят от изменения организма и условий его жизни, они переходят в неизменном виде от предков к потомкам в свободной, независимой комбинации, образуя случайную мозаику свойств.

…Менделизм является не биологической, а чисто статистической теорией, не вскрывающей действительных законов наследственности, а заменяющей биологическое изучение формально-математическими методами исследования».

В указателе всех четырех томов сочинений Мичурина (главный редактор Лысенко) повторяется одна и та же фраза: «Никакого отношения к биологической науке Мендель не имеет».

Посмотрим, так ли это?

Хромосомная теория развивалась, совершенно не зная о Менделе. Мендель тем не менее мог знать о хромосомной теории, так как его работа появилась в 60-х годах прошлого века, а хромосомы были открыты в 70-х годах. Однако Мендель в своей работе написал, что открытые им законы должны иметь какой-то коррелят в половых клетках, так что его можно считать предвидевшим открытие хромосом.

Предшественники Менделя по скрещиванию растений накопили огромный фактический материал, известный и Дарвину. И им был уже известен поразительный факт необыкновенного многообразия потомства гибридов. Для объяснения этого многообразия говорили об огромном влиянии на изменчивость гибридизации. Опытные селекционеры с древнейших времен догадывались, что эта изменчивость не так хаотична, как кажется, и использовали гибридизацию для селекции новых пород, но дать какую-нибудь теорию этого явления ученые были бессильны. Бессилен оказался и сам Дарвин, и потому известные ему факты не были использованы в его теории; исключительная добросовестность Ч. Дарвина как ученого не позволила ему, однако, замолчать эти факты, и потому во многих местах он их упоминает. Неудача Дарвина объясняется в данном случае двумя обстоятельствами: 1) его, естественно, влекла в первую очередь разработка фактов, освещающих отдельные трудные вопросы развитой им теории эволюции (приспособления цветов к опылению, лазящие растения, насекомоядные растения и пр.); 2) Дарвин был совершенно чужд математике, а Мендель потому и сумел добиться успеха, что был математически образованным человеком. Мендель и пошел по обычному пути всех естественных наук: анализ явлений и построение простейшей теории этого явления. Проведя тщательные исследования на горохе, потребовавшие от него исключительного напряжения, он и пришел к трем своим законам: 1) закон единообразия первого поколения; 2) закон расщепления; 3) закон независимости. На основании этих законов можно было предвидеть все разнообразие потомства при скрещивании между собой гибридных растений, если известен был генетический состав исходных предков. В хаос был внесен порядок, и в этом заключается бессмертная заслуга Менделя. Вспомним слова К. Маркса, что наука только тогда достигает совершенства, когда ей удается пользоваться математикой. Маленькая работка Менделя пробила брешь в стене непознаваемости: то, что казалось совсем непонятным в известной своей мере оказалось понятым.

Но Мендель, как точный ученый, проверил свои законы на одном из труднейших ботанических объектов — ястребинке и здесь как будто потерпел фиаско: открытые им на горохе законы оказались совершенно неприложимыми к ястребинке. Это обстоятельство, а также отсутствие понимания со стороны ученых (которые были неподготовлены к этому открытию и, как большинство биологов даже в наше время, совершенно математики чуждались) и сильное напряжение глаз, связанное с работой с ястребинкой, очевидно, и были причиной того, что он отошел от науки и занялся своими монашескими делами. Обстановка созрела для восприятия идей Менделя только к началу XX века, когда развитие цитологии открыло интереснейшие явления, связанные с хромосомами, и в биологию, с другой стороны, вошло статистическое изучение биологических явлений, биометрия, родоначальниками которой были двоюродный брат Ч. Дарвина, Ф. Гальтон и математик К. Пирсон.

Но если сам Мендель убедился в ограниченном значении своих законов, то можно ли их называть законами? Очень многие склонны называть их правилами, оставляя название законов за такими научными положениями, которые исключений не знают. Здесь забывается, что для выполнения закона требуется соблюдение определенных условий, и если мы эти условия можем точно формулировать, то осуществимость закона должна проверяться только при соблюдении этих точно формулированных условий. Если же мы это будем игнорировать, то придем к весьма странным выводам и, настаивая на них, затормозим движение науки. По Аристотелю скорость равномерно движущегося тела пропорциональна постоянно действующей силе, приложенной к телу, а по Галилею и Ньютону пропорционально этой силе ускорение, и если на тело постоянно действует одинаковая сила, то получится не равномерное, а ускоренное движение. На практике что мы наблюдаем, как движется тело, по Аристотелю или по Галилею? Конечно, по Аристотелю: равномерно движущийся автомобиль постоянно потребляет горючее. Значит, мы должны отвергнуть механику Галилея и Ньютона и вернуться к Аристотелю? Так бы случилось, если бы в физике завладели властью лица по культурному уровню равные Лысенко и его приспешникам. В чем же дело? В том, что законы Галилея и Ньютона рассчитаны на движение без трения (что имеет место, например, при движении небесных светил), а движение без трения в земной обстановке практически никогда не наблюдается. Таких примеров можно привести множество.

И в отношении законов Менделя можно точно установить условия их применения: 1) полная плодовитость гибридов, связанная с возможностью конъюгации хромосом; 2) для первого закона — гомозиготность исходных форм; 3) для третьего закона первое время исключений не наблюдалось, но вскоре были найдены исключения, разрешенные школой Моргана, о чем будет сказано дальше.

Сейчас выяснилось, что неудача с ястребинкой объясняется тем, что это растение, как и многие другие (например, обыкновенный одуванчик), как правило, размножается без оплодотворения, здесь законы Менделя и не могут быть приложимы.

С самого начала своего возникновения менделизм касался только проблемы наследственной традиции и совершенно не касался проблемы осуществления. Поскольку его законы касаются только консервативной наследственности, менделизм в своем первоначальном виде был чужд теории эволюции, а так как изучение полигибридов показывало, какое разнообразие может быть достигнуто простой комбинацией элементарных частей, то возник соблазн объяснять всю эволюцию комбинированием неизменяемых генов. Эта теория, поддерживаемая, например, Бэтсоном и Лотси, никогда не пользовалась сочувствием большинства генетиков, а в настоящее время ее, может быть, придерживаются лишь единичные ученые. Комбинаторика объясняет многое, но в качестве теории эволюции, конечно, не годится. Менделизм является теорией, объясняющей многообразие, возникающее при гибридизации при получении вполне плодовитого потомства (что связано с правильной конъюгацией хромосом и правильной редукцией хроматина при созревании половых клеток). Теорией наследственной изменчивости (мутаций) менделизм не является, но огромное количество возникающих мутаций при своем наследовании подчиняется законам Менделя.

Менделизм со времени своего новооткрытая в начале XX века претерпел значительную эволюцию. Сам Мендель говорил о наследовании признаков и определенно указывал, что его законы основаны на материальном свойстве и расположении элементов, соединяющихся в клетках. Этим элементам наследственной субстанции было присвоено Иоганнсеном название гена, которое претерпело очень быструю эволюцию. Эту эволюцию лучше всего показать, если сопоставить два соответственных места из двух немецких изданий классической книги Иоганнсена «Элементы точного учения о наследственности» (1909 и 1913):

В первом издании: «Слово ген свободно от всякой гипотезы; оно выражает лишь тот твердо установленный факт, что многие особенности организма обусловлены особыми, находящимися в гаметах отделимыми и потому самостоятельными «состояниями», «основами», «зачатками» — короче тем, что мы будем называть геном». Во втором издании (1913): « Мы ни в коем случае не должны себе представлять, что отдельному гену (или особому виду генов) соответствует отдельная особенность, «единичная особенность» или «признак», как любят выражаться морфологи. Подобное ранее распространенное представление должно быть обозначено не только как наивное, но и как совершенно ложное. В действительности, все реализованные признаки являются реакциями всей конституции данной зиготы; реакции, которые могут быть различны, смотря по природе среды».

Верно, что и после этого высказывания отдельные генетики говорили еще о «генах признаков» и о независимости признаков от влияния среды, но ведущие генетики (Иоганнсен, Бауэр, Т. Морган и другие) всегда подчеркивали и приводили ряд примеров двух положений: 1) нет генов-признаков, а каждый ген имеет если не универсальное, то очень широкое действие на все признаки организма;

2) состав генов недостаточен для осуществления признаков организма: наследуются не признаки, а норма реакции, и осуществленная сумма признаков (фенотип) есть следствие совместного действия генотипа и условий развития. Эту азбуку менделизма лысенковские критики менделизма и поддерживающие Лысенко философы игнорируют, сознательно или бессознательно, в данном случае это не имеет значения. Отчетливое противопоставление генотипа фенотипу есть большая заслуга прежде всего Иоганнсена и эта заслуга с него снята быть не может (Иоганнсен пришел к этому различию независимо от законов Менделя, но это вполне гармонировало с менделизмом).

Именно в силу того, что наследуются не признаки, а нормы реакции на условия развития и важно было вместо непригодного термина «признак» ввести новый термин «ген», который совершенно необходим как элемент наследственной субстанции, допускающий комбинирование с другими элементами. В этом смысле понятие «ген» так же необходимо для генетики, как понятие «атом» и «молекула» в химии, и оно подвержено такой же эволюции и такой же дискуссии, как и вполне оправдавшие себя понятия атома и молекулы.

Как было уже указано, теория монополии хромосом в наследственности и законы Менделя первоначально развивались совершенно независимо. Мало того, многие ведущие биологи указывали как будто на непримиримое противоречие между хромосомной теорией наследственности и третьим законом Менделя — о независимости генов. Во втором издании своего руководства (1913) Иоганнсен указывает, что отдельные хромосомы нельзя рассматривать как носителей отдельных генотипических элементов, так как число генотипических элементов в гамете много больше числа хромосом; если же принять обмен факторами хромосом, то теряется как будто прочно обоснованное воззрение на индивидуальность хромосом. Но уже в 1913 году, когда Иоганнсен писал эти возражения, были известны факты, послужившие к тому синтезу хромосомной теории и менделизма, который в нашей литературе получил название морганизма, так как действительно связан с именем Т. Моргана и его школы. Перейдем поэтому к так называемому морганизму.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК